ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Дан равносторонний треугольник со стороной a. Найдите отрезок, соединяющий вершину треугольника с точкой, делящей противоположную сторону в отношении 2 : 1.
В остроугольном треугольнике ABC угол C равен 60°, H – точка пересечения высот. Окружность с центром H и радиусом HC второй раз пересекает прямые CA и CB в точках M и N соответственно. Докажите, что прямые AN и BM параллельны (или совпадают). На стороне AB треугольника ABC дана точка P.
Проведите через точку P прямую (отличную от AB), пересекающую
лучи CA и CB в таких точках M и N, что AM = BN.
|
Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]
На стороне AB треугольника ABC дана точка P.
Проведите через точку P прямую (отличную от AB), пересекающую
лучи CA и CB в таких точках M и N, что AM = BN.
Постройте треугольник ABC по радиусу вписанной
окружности r и (ненулевым) длинам отрезков AO и AH,
где O — центр вписанной окружности, H — ортоцентр.
Дан прямоугольный треугольник. Впишите в него прямоугольник с общим прямым углом, у которого диагональ минимальна.
С помощью циркуля и линейки постройте равносторонний треугольник, у которого одна из вершин была в данной точке, а две другие — на двух данных окружностях.
С помощью циркуля и линейки постройте равносторонний треугольник, вершины которого лежат соответственно на трёх данных концентрических окружностях.
Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке