ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи a, b и c - длины сторон произвольного треугольника. Пусть p = + + и q = + + . Докажите, что | p - q| < 1. Решение |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]
Существует ли треугольник, для сторон x, y, z которого выполнено соотношение x³ + y³ + z³ = (x + y)(y + z)(z + x)?
a, b, c – длины сторон треугольника. Докажите, что
Даны пять различных положительных чисел, сумма квадратов которых равна сумме всех десяти их попарных произведений. а) Докажите, что среди пяти данных чисел найдутся три, которые не могут быть длинами сторон одного треугольника.
У Феди есть три палочки. Если из них нельзя сложить треугольник, Федя укорачивает самую длинную из палочек на сумму длин двух других. Если длина палочки не обратилась в нуль и треугольник снова нельзя сложить, то Федя повторяет операцию, и т. д. Может ли этот процесс продолжаться бесконечно?
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|