ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что треугольники с длинами сторон a, b, c и a1, b1, c1 подобны тогда и только тогда, когда  

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 152]      



Задача 55508

Темы:   [ Признаки подобия ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Диагональ AC вписанного четырёхугольника ABCD является биссектрисой угла DAB.
Докажите, что один из двух треугольников, отсекаемых от треугольника ABC диагональю BD, подобен треугольнику ABC.

Прислать комментарий     Решение

Задача 56477

Темы:   [ Признаки подобия ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 9

На стороны BC и CD параллелограмма ABCD (или на их продолжения) опущены перпендикуляры AM и AN.
Докажите, что треугольники MAN и ABC подобны.

Прислать комментарий     Решение

Задача 56504

Темы:   [ Признаки подобия ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

На сторонах треугольника ABC как на основаниях построены подобные равнобедренные треугольники AB1С и AC1B внешним образом и BA1C внутренним образом. Докажите, что AB1A1C1 – параллелограмм.

Прислать комментарий     Решение

Задача 57530

Темы:   [ Признаки подобия ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3+
Классы: 8,9

Докажите, что треугольники с длинами сторон a, b, c и a1, b1, c1 подобны тогда и только тогда, когда  

Прислать комментарий     Решение

Задача 64445

Темы:   [ Признаки подобия ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 9,10,11

Автор: Фольклор

На сторонах треугольника ABC построены три подобных треугольника: YBA и ZAC – во внешнюю сторону, а XBC – внутрь (соответственные вершины перечисляются в одинаковом порядке). Докажите, что AYXZ – параллелограмм.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 152]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .