ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 152]      



Задача 102241

Темы:   [ Признаки подобия ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Хорды и секущие (прочее) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

На одной стороне угла O взяты точки K, L, M, а на другой – точки P, Q, R так, что  KQPR,  PLKM,  LRPQ,  QMKL.  Отношение расстояния от центра описанной вокруг четырёхугольника KPRM окружности до точки O к длине отрезка KP равно 17/6. Найдите величину угла O.

Прислать комментарий     Решение

Задача 116504

Темы:   [ Признаки подобия ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные и описанные окружности ]
Сложность: 4-
Классы: 8,9,10

Пусть O – центр описанной окружности остроугольного неравнобедренного треугольника ABC, точка C1 симметрична C относительно O, D – середина стороны AB, K – центр описанной окружности треугольника ODC1. Докажите, что точка O делит пополам отрезок прямой OK, лежащий внутри угла ACB.

Прислать комментарий     Решение

Задача 110792

Темы:   [ Признаки подобия ]
[ Свойства симметрий и осей симметрии ]
[ Преобразования подобия (прочее) ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4
Классы: 9,10,11

Треугольники ABC и A1B1C1 подобны и по-разному ориентированы. На отрезке AA1 взята такая точка A', что  AA' : A1A' = BC : B1C1.  Аналогично строим B' и C'. Докажите, что A', B' и C' лежат на одной прямой.

Прислать комментарий     Решение

Задача 116207

Темы:   [ Признаки подобия ]
[ Вписанные и описанные окружности ]
[ Теорема синусов ]
Сложность: 4
Классы: 10,11

Даны треугольник ABC и произвольная точка P, A1, B1 и C1  – вторые точки пересечения прямых AP, BP и CP с описанной окружностью треугольника ABC, A2, B2 и C2 – точки, симметричные A1, B1 и C1 относительно прямых BC, CA и AB соответственно. Докажите, что треугольники A1B1C1 и A2B2C2 подобны.

Прислать комментарий     Решение

Задача 116502

Темы:   [ Признаки подобия ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства параллелограмма ]
[ Симметрия помогает решить задачу ]
Сложность: 4+
Классы: 8,9,10

На стороне AC треугольника ABC отмечена точка K, причём  AK = 2KC  и  ∠ABK = 2∠KBCF – середина стороны AC, L – проекция точки A на BK. Докажите, что прямые FL и BC перпендикулярны.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 152]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .