Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 152]
В прямоугольном треугольнике ABC с прямым углом C проведена
высота CH. Докажите, что AC² = AB·AH и CH² = AH·BH.
AA1 и BB1 – высоты остроугольного треугольника ABC. Докажите, что:
а) треугольник AA1C подобен треугольнику BB1C;
б) треугольник ABC подобен треугольнику A1B1C.
в) Найдите коэффициент подобия треугольников A1B1C и ABC, если ∠C = γ.
Пусть M – середина стороны BC параллелограмма ABCD. В каком отношении отрезок AM делит диагональ BD?
Через точки M и N, делящие сторону AB треугольника ABC на три равные части, проведены прямые, параллельные стороне AC.
Найдите площадь части треугольника, заключённой между этими прямыми, если площадь треугольника ABC равна 1.
|
|
Сложность: 3- Классы: 8,9,10
|
Барон Мюнхгаузен утверждает, что ему удалось составить некоторый прямоугольник из нескольких подобных между собой непрямоугольных треугольников. Можно ли ему верить? (Среди подобных треугольников могут быть и равные.)
Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 152]