ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что центр масс системы точек X1,..., Xn, Y1,..., Ym с массами a1,..., an, b1,..., bm совпадает с центром масс двух точек — центра масс X первой системы с массой a1 +...+ an и центра масс Y второй системы с массой b1 +...+ bm.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 57747

Тема:   [ Основные свойства центра масс ]
Сложность: 3
Классы: 9

а) Докажите, что центр масс существует и единствен для любой системы точек.
б) Докажите, что если X — произвольная точка, а O — центр масс точек X1,..., Xn с массами m1,..., mn, то $ \overrightarrow{XO}$ = $ {\frac{1}{m_1+\ldots+m_n}}$(m1$ \overrightarrow{XX_1}$ +...+ mn$ \overrightarrow{XX_n}$).
Прислать комментарий     Решение


Задача 57748

Тема:   [ Основные свойства центра масс ]
Сложность: 3
Классы: 9

Докажите, что центр масс системы точек X1,..., Xn, Y1,..., Ym с массами a1,..., an, b1,..., bm совпадает с центром масс двух точек — центра масс X первой системы с массой a1 +...+ an и центра масс Y второй системы с массой b1 +...+ bm.
Прислать комментарий     Решение


Задача 57749

Тема:   [ Основные свойства центра масс ]
Сложность: 3
Классы: 9

Докажите, что центр масс точек A и B с массами a и b лежит на отрезке AB и делит его в отношении b : a.
Прислать комментарий     Решение


Задача 73669

Темы:   [ Основные свойства центра масс ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Теорема о группировке масс ]
[ ГМТ с ненулевой площадью ]
Сложность: 5
Классы: 9,10,11

Автор: Л.Г.Макаров

Какое множество точек заполняют центры тяжести треугольников, три вершины которых лежат соответственно на трёх сторонах АВ, ВС и АС данного треугольника АВС?
Прислать комментарий     Решение


Задача 77881

Темы:   [ Свойства симметрий и осей симметрии ]
[ Основные свойства центра масс ]
Сложность: 4-
Классы: 8,9,10

Доказать, что если многоугольник имеет несколько осей симметрии, то все они пересекаются в одной точке.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .