Страница:
<< 1 2 [Всего задач: 8]
|
|
Сложность: 4 Классы: 8,9,10
|
На сторонах
AB,
BC,
CA правильного треугольника
ABC найти такие точки
X,
Y,
Z
(соответственно), чтобы площадь треугольника, образованного прямыми
CX,
BZ,
AY, была вчетверо меньше площади треугольника
ABC и чтобы было выполнено
условие:
$$\frac{AX}{XB}=\frac{BY}{YC}=\frac{CZ}{ZA}.$$
|
|
Сложность: 4+ Классы: 9,10,11
|
Пусть
M — центр масс
n-угольника
A1...
An;
M1,...,
Mn — центры масс (
n - 1)-угольников,
полученных из этого
n-угольника выбрасыванием вершин
A1,...,
An соответственно. Докажите, что многоугольники
A1...
An
и
M1...
Mn гомотетичны.
|
|
Сложность: 3+ Классы: 9,10
|
Сумма n чисел равна нулю, а сумма их квадратов равна единице. Докажите, что среди этих чисел найдутся два, произведение которых не больше – 1/n.
Страница:
<< 1 2 [Всего задач: 8]