ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Доказать, что любая правильная дробь может быть представлена в виде (конечной) суммы обратных величин попарно различных целых чисел. Докажите, что если n > 2, то число всех правильных несократимых дробей со знаменателем n чётно. Найдите все несократимые дроби, увеличивающиеся вдвое после увеличения и числителя и знаменателя на 10. Дан параллелограмм ABCD и точка M. Через точки A, B, C
и D проведены прямые, параллельные прямым MC, MD, MA
и MB соответственно. Докажите, что они пересекаются в одной точке.
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1026]
Противоположные стороны выпуклого шестиугольника
попарно равны и параллельны. Докажите, что он имеет центр симметрии.
Дан параллелограмм ABCD и точка M. Через точки A, B, C
и D проведены прямые, параллельные прямым MC, MD, MA
и MB соответственно. Докажите, что они пересекаются в одной точке.
Докажите, что окружность при осевой симметрии переходит в окружность.
Четырехугольник имеет ось симметрии. Докажите, что
этот четырехугольник либо является равнобедренной трапецией,
либо симметричен относительно диагонали.
Ось симметрии многоугольника пересекает его стороны
в точках A и B. Докажите, что точка A является либо
вершиной многоугольника, либо серединой стороны, перпендикулярной
оси симметрии.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1026]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке