ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Четыре натуральных числа таковы, что квадрат суммы любых двух из них делится на произведение двух оставшихся.
Докажите, что по крайней мере три из этих чисел равны между собой.

Вниз   Решение


Доказать, что если 21 человек собрали 200 орехов, то есть два человека, собравшие поровну орехов.

ВверхВниз   Решение


Постройте треугольник по данным серединам двух сторон и прямой, на которой лежит биссектриса, проведенная к одной из этих сторон.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]      



Задача 57876

Тема:   [ Симметрия и построения ]
Сложность: 4
Классы: 9

Дан острый угол MON и точки A и B внутри его. Найдите на стороне OM точку X так, чтобы треугольник XYZ, где Y и Z — точки пересечения прямых XA и XB с ON, был равнобедренным: XY = XZ.
Прислать комментарий     Решение


Задача 57877

Темы:   [ Симметрия и построения ]
[ Две касательные, проведенные из одной точки ]
[ Биссектриса угла ]
Сложность: 4
Классы: 8,9,10

Дана прямая MN и две точки A и B по одну сторону от нее. Постройте на прямой MN точку X так, что  ∠AXM = 2∠BXN.

Прислать комментарий     Решение

Задача 57881

Тема:   [ Симметрия и построения ]
Сложность: 4
Классы: 9

Постройте треугольник по данным серединам двух сторон и прямой, на которой лежит биссектриса, проведенная к одной из этих сторон.
Прислать комментарий     Решение


Задача 55649

Темы:   [ Симметрия и построения ]
[ Построение треугольников по различным точкам ]
Сложность: 4+
Классы: 8,9

Даны прямые l1, l2 и l3, пересекающиеся в одной точке. С помощью циркуля и линейки постройте треугольник ABC, для которого данные прямые были бы серединными перпендикулярами к его сторонам.

Прислать комментарий     Решение


Задача 55648

Темы:   [ Симметрия и построения ]
[ Построение треугольников по различным точкам ]
Сложность: 4+
Классы: 8,9

С помощью циркуля и линейки постройте треугольник ABC, если даны его вершины A и B, прямая l, на которой лежит вершина C, и разность углов $ \angle$A - $ \angle$B = $ \varphi$.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .