ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Пусть M — выпуклый многоугольник, площадь которого равна S, а периметр равен P; D — круг радиуса R. Докажите, что площадь фигуры $ \lambda_{1}^{}$M + $ \lambda_{2}^{}$D равна

$\displaystyle \lambda_{1}^{2}$S + $\displaystyle \lambda_{1}^{}$$\displaystyle \lambda_{2}^{}$PR + $\displaystyle \lambda_{2}^{2}$$\displaystyle \pi$R2.


б) Докажите, что S$ \le$P2/4$ \pi$.

   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 78]      



Задача 79457

Темы:   [ Покрытия ]
[ Неравенства с площадями ]
[ Площадь треугольника (через высоту и основание) ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 5
Классы: 9,10,11

Некоторый треугольник можно вырезать из бумажной полоски единичной ширины, а из любой полоски меньшей ширины его вырезать нельзя. Какую площадь может иметь этот треугольник?
Прислать комментарий     Решение


Задача 57818

Темы:   [ Перенос помогает решить задачу ]
[ Неравенства с площадями ]
[ Формула включения-исключения ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 7
Классы: 9,10,11

В квадрате со стороной 1 расположена фигура, расстояние между любыми двумя точками которой не равно 0, 001. Докажите, что площадь этой фигуры не превосходит: а) 0, 34; б) 0, 287.
Прислать комментарий     Решение


Задача 58138

Темы:   [ Сумма Минковского ]
[ Неравенства с площадями ]
Сложность: 7
Классы: 9,10

Докажите, что S12$ \ge$$ \sqrt{S_1S_2}$, т.е. $ \sqrt{S(\lambda_1,\lambda_2)}$$ \ge$$ \lambda_{1}^{}$$ \sqrt{S_1}$ + $ \lambda_{2}^{}$$ \sqrt{S_2}$ (Брунн).
Прислать комментарий     Решение


Задача 58139

Темы:   [ Сумма Минковского ]
[ Неравенства с площадями ]
Сложность: 7
Классы: 9,10

а) Пусть M — выпуклый многоугольник, площадь которого равна S, а периметр равен P; D — круг радиуса R. Докажите, что площадь фигуры $ \lambda_{1}^{}$M + $ \lambda_{2}^{}$D равна

$\displaystyle \lambda_{1}^{2}$S + $\displaystyle \lambda_{1}^{}$$\displaystyle \lambda_{2}^{}$PR + $\displaystyle \lambda_{2}^{2}$$\displaystyle \pi$R2.


б) Докажите, что S$ \le$P2/4$ \pi$.
Прислать комментарий     Решение

Задача 32076

Темы:   [ Площадь треугольника не превосходит половины произведения двух сторон ]
[ Симметрия помогает решить задачу ]
[ Неравенства с площадями ]
[ Площадь четырехугольника ]
Сложность: 3+
Классы: 8,9,10

a, b, c, d – стороны четырёхугольника (в любом порядке), S – его площадь. Докажите, что  S ≤ ½ (ab + cd).

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 78]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .