Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Доказать, что уравнение  4k – 4l = 10n  не имеет решений в целых числах.

Вниз   Решение


Сформулируйте теорему, обратную теореме Пифагора. Верна ли она?

ВверхВниз   Решение


В равнобедренном треугольнике ABC длина основания AC равна 2$ \sqrt{7}$, длина боковой стороны равна 8. Точка K делит высоту BD треугольника в отношении 2:3, считая от точки B. Что больше: длина CK или длина AC?

ВверхВниз   Решение


Решить в целых числах уравнение  xy = x + y.

ВверхВниз   Решение


Аня, Боря и Вася решили пойти на "Ёлку". Они договорились встретиться на автобусной остановке, но не знают, кто во сколько придёт. Каждый из них может прийти в случайный момент времени с 15.00 до 16.00. Вася самый терпеливый из всех: если он придёт и на остановке не будет ни Ани, ни Бори, то он будет ждать кого-нибудь из них 15 минут, и если никого не дождётся, пойдёт на "Ёлку" один. Боря менее терпеливый: он будет ждать лишь 10 минут. Аня самая нетерпеливая: она вообще не будет ждать. Однако если Боря и Вася встретятся, то они будут ждать Аню до 16.00. Какова вероятность того, что на "Ёлку" они пойдут все вместе?

ВверхВниз   Решение


В странах Диллии и Даллии денежными единицами являются диллеры и даллеры соответственно, причем в Диллии диллер меняется на 10 даллеров, а в Даллии даллер меняется на 10 диллеров. Начинающий финансист имеет 1 диллер и может свободно перезжать из одной страны в другую и менять свои деньги в обеих странах. Докажите, что количество даллеров у него никогда не сравняется с количеством диллеров.

ВверхВниз   Решение


На продолжениях сторон треугольника ABC взяты точки A1, B1 и C1 так, что $ \overrightarrow{AB_{1}} $ = 2$ \overrightarrow{AB}$, $ \overrightarrow{BC_{1}} $ = 2$ \overrightarrow{BC}$ и $ \overrightarrow{CA_{1}} $ = 2$ \overrightarrow{AC}$. Найдите площадь треугольника A1B1C1, если известно, что площадь треугольника ABC равна S.

ВверхВниз   Решение


Круг разделён на шесть секторов, в каждом из которых стоит фишка. Разрешается за один ход сдвинуть любые две фишки в соседние с ними сектора.
Можно ли с помощью таких операций собрать все фишки в одном секторе?

ВверхВниз   Решение


Дана шахматная доска. Разрешается перекрашивать другой цвет сразу все клетки, расположенные внутри любого квадрата 2×2.
Может ли при этом на доске остаться ровно одна чёрная клетка?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 199]      



Задача 58171

Темы:   [ Инварианты ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3
Классы: 8,9

Дана шахматная доска. Разрешается перекрашивать другой цвет сразу все клетки, расположенные внутри любого квадрата 2×2.
Может ли при этом на доске остаться ровно одна чёрная клетка?

Прислать комментарий     Решение

Задача 79659

Темы:   [ Инварианты ]
[ Четность и нечетность ]
Сложность: 3
Классы: 7,8

Даны шесть чисел: 1, 2, 3, 4, 5, 6. Разрешается к любым двум из них прибавлять по 1.
Можно ли, проделав это несколько раз, сделать эти числа равными?

Прислать комментарий     Решение

Задача 88307

Темы:   [ Инварианты ]
[ Арифметические действия. Числовые тождества ]
Сложность: 3
Классы: 7,8

Набор чисел a, b, c каждую секунду заменяется на a + bc, b + ca, c + ab. В начале имеется набор чисел 2000, 2002, 2003. Может ли через некоторое время получиться набор 2001, 2002, 2003.
Прислать комментарий     Решение


Задача 97923

Темы:   [ Инварианты ]
[ Задачи на смеси и концентрации ]
[ Процессы и операции ]
Сложность: 3
Классы: 7,8,9,10

Автор: Фомин С.В.

Имеется два трёхлитровых сосуда. В одном 1 л воды, в другом – 1 л двухпроцентного раствора поваренной соли. Разрешается переливать любую часть жидкости из одного сосуда в другой, после чего перемешивать. Можно ли за несколько таких переливаний получить полуторапроцентный раствор в том сосуде, в котором вначале была вода?

Прислать комментарий     Решение

Задача 98630

Темы:   [ Инварианты ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 6,7,8

На столе лежит куча из 637 ракушек. Из неё убирают одну ракушку и кучу делят на две (не обязательно поровну). Затем из какой-нибудь кучи, содержащей больше одной ракушки, снова убирают одну ракушку и снова кучу делят на две. И так далее. Можно ли через несколько ходов оставить на столе только кучи, состоящие из трёх ракушек?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 199]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .