ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи У прямого кругового конуса длина образующей равна 5, а диаметр равен 8.
Найдите наибольшую площадь треугольного сечения, которая может получиться при пересечении конуса плоскостью. Высота прямоугольного треугольника, проведённая из вершины прямого угла, делит гипотенузу на отрезки, равные a и b. Найдите катеты. Докажите, что при инверсии с центром O окружность, проходящая
через O, переходит в прямую, а окружность, не проходящая через O, — в окружность.
Пусть точки P и Q изогонально сопряжены относительно треугольника ABC. Точка A1, лежащая на дуге BC описанной около треугольника окружности ω, удовлетворяет условию ∠BA1P=∠CA1Q. Точки B1 и C1 определены аналогично. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке. Докажите, что при инверсии с центром O прямая l,
не проходящая через O, переходит в окружность, проходящую через O.
Докажите неравенство 2m+n–2 ≥ mn, где m и n – натуральные числа. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 330]
Докажите неравенство для натуральных n > 1:
Докажите неравенство: 2n > n.
Докажите неравенство 2m+n–2 ≥ mn, где m и n – натуральные числа.
Докажите тождество:
Докажите тождество:
13 + 23 +...+ n3 = (1 + 2 +...+ n)2.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 330]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке