ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Из 100 студентов университета английский язык знают 28 студентов, немецкий — 30, французский — 42, английский и немецкий — 8, английский и французский — 10, немецкий и французский — 5, все три языка знают 3 студента. Сколько студентов не знают ни одного из трех языков?

   Решение

Задачи

Страница: << 104 105 106 107 108 109 110 >> [Всего задач: 1308]      



Задача 34843

Тема:   [ Взвешивания ]
Сложность: 3+
Классы: 8,9

Антиквар приобрел 99 одинаковых по виду старинных монет. Ему сообщили, что ровно одна из монет - фальшивая - легче настоящих (а настоящие весят одинаково). Как, используя чашечные весы без гирь, за 7 взвешиваний выявить фальшивую монету, если антиквар не разрешает никакую монету взвешивать более двух раз?
Прислать комментарий     Решение


Задача 35529

Темы:   [ Теория алгоритмов (прочее) ]
[ Инварианты ]
Сложность: 3+
Классы: 8,9,10

На столе - куча из 1001 камня. Ход состоит в том, что из какой-либо кучи, содержащей более одного камня, выкидывают камень, а затем одну из куч делят на две. Можно ли через несколько ходов оставить на столе только кучки, состоящие из трех камней?
Прислать комментарий     Решение


Задача 35725

Темы:   [ Ребусы ]
[ Криптография ]
Сложность: 3+
Классы: 8,9,10,11

Для проверки телетайпа, печатающего буквами русского алфавита АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ передан набор из 9 слов, содержащий все 33 буквы алфавита. В результате неисправности телетайпа на приемном конце получены слова ГЪЙ АЭЁ БПРК ЕЖЩЮ НМЬЧ СЫЛЗ ШДУ ЦХОТ ЯФВИ Восстановите исходный текст, если известно, что характер неисправности таков, что каждая буква заменяется буквой, отстоящей от нее в указанном алфавите не дальше, чем на две буквы. Например, буква Б может перейти в одну из букв А, Б, В, Г. (Задача с сайта www.cryptography.ru.)
Прислать комментарий     Решение


Задача 60435

 [Формула включений и исключений]
Тема:   [ Формула включения-исключения ]
Сложность: 3+
Классы: 8,9,10

Докажите справедливость равенства

| A1 $\displaystyle \cup$ A2 $\displaystyle \cup$...$\displaystyle \cup$ An| = | A1| +...+ | An| - | A1 $\displaystyle \cap$ A2| -
         - | A1 $\displaystyle \cap$ A3| -...- | An - 1 $\displaystyle \cap$ An| +...+ (- 1)n - 1| A1 $\displaystyle \cap$ A2 $\displaystyle \cap$...$\displaystyle \cap$ An|,

где через | A| обозначено количество элементов множества A.

Прислать комментарий     Решение

Задача 60436

Тема:   [ Формула включения-исключения ]
Сложность: 3+
Классы: 8,9,10

Из 100 студентов университета английский язык знают 28 студентов, немецкий — 30, французский — 42, английский и немецкий — 8, английский и французский — 10, немецкий и французский — 5, все три языка знают 3 студента. Сколько студентов не знают ни одного из трех языков?

Прислать комментарий     Решение

Страница: << 104 105 106 107 108 109 110 >> [Всего задач: 1308]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .