ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Может ли наибольший общий делитель двух натуральных чисел быть больше их разности?

   Решение

Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 2440]      



Задача 60497

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 2+
Классы: 8,9

Может ли наибольший общий делитель двух натуральных чисел быть больше их разности?

Прислать комментарий     Решение

Задача 60498

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 2+
Классы: 8,9,10

Докажите, что  (bc, ac, ab)  делится на  (a, b, c)².

Прислать комментарий     Решение

Задача 60501

Темы:   [ Делимость чисел. Общие свойства ]
[ Линейная и полилинейная алгебра ]
Сложность: 2+
Классы: 8,9

Для некоторых целых x и y число  3x + 2y  делится на 23. Докажите, что число  17x + 19y  также делится на 23.

Прислать комментарий     Решение

Задача 60505

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
Сложность: 2+
Классы: 7,8,9

Найдите все натуральные  n > 1,  для которых  n³ – 3  делится на  n – 1.

Прислать комментарий     Решение

Задача 60552

Темы:   [ Делимость чисел. Общие свойства ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 2+
Классы: 7,8,9

Докажите, что для действительного положительного α и натурального d всегда выполнено равенство  [α/d] = [[α]/d].

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .