ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Последовательность чисел Люка
{L0, L1, L2, ...} = {2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, ...}
задается равенствами L0=2, L1=1, Ln=Ln-1+ Ln-2 при n>1.
Выразите Ln в замкнутой форме через $ \varphi$ и $ \widehat{\varphi}$.

   Решение

Задачи

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 694]      



Задача 60575

Тема:   [ Числа Фибоначчи ]
Сложность: 4
Классы: 9,10,11

В последовательности чисел Фибоначчи выбрано 8 чисел, идущих подряд. Докажите, что их сумма не является числом Фибоначчи.

Прислать комментарий     Решение

Задача 60587

Тема:   [ Числа Фибоначчи ]
Сложность: 4
Классы: 9,10,11

Последовательность чисел Люка
{L0, L1, L2, ...} = {2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, ...}
задается равенствами L0=2, L1=1, Ln=Ln-1+ Ln-2 при n>1.
Выразите Ln в замкнутой форме через $ \varphi$ и $ \widehat{\varphi}$.

Прислать комментарий     Решение

Задача 60594

Темы:   [ Рекуррентные соотношения (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Уравнения в целых числах ]
Сложность: 4
Классы: 9,10,11

Пусть a1, a2, ... – такая последовательность ненулевых чисел, что  (am, an) = a(m, n)  (m, n ≥ 1).

Докажите, что все обобщенные биномиальные коэффициенты     являются целыми числами.

Прислать комментарий     Решение

Задача 60913

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Двоичная система счисления ]
Сложность: 4
Классы: 8,9,10,11

Задача Иосифа Флавия. n человек выстраиваются по кругу и нумеруются числами от 1 до n. Затем из них исключается каждый второй до тех пор, пока не останется только один человек. Например, если n = 10, то порядок исключения таков: 2, 4, 6, 8, 10, 3, 7, 1, 9, так что остается номер 5. Для данного n будем обозначать через J(n) номер последнего оставшегося человека. Докажите, что
а) J(2n) = 2J(n) - 1;
б) J(2n + 1) = 2J(n) + 1;
в) если n = (1bm - 1bm - 2...b1b0)2, то J(n) = (bm - 1bm - 2...b1b01)2.

Прислать комментарий     Решение

Задача 60993

Темы:   [ Рекуррентные соотношения (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Алгоритм Евклида ]
Сложность: 4
Классы: 9,10,11

Последовательность a0, a1, a2, ... задана условиями  a0 = 0,  an+1 = P(an)  (n ≥ 0),  где P(x) – многочлен с целыми коэффициентами,  P(x) > 0  при  x ≥ 0.
Докажите, что для любых натуральных m и k  (am, ak) = a(m, k).

Прислать комментарий     Решение

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .