ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть A — произвольный угол, B и C — острые углы. Всегда ли существует такой угол X, что
sin X =
(Из `` Воображаемой геометрии'' Н. И. Лобачевского).
![]() ![]() Докажите, что любые m чисел x1,..., xm, попарно не сравнимые по модулю m, представляют собой полную систему вычетов по модулю m. ![]() ![]() |
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 368]
Докажите, что любые m чисел x1,..., xm, попарно не сравнимые по модулю m, представляют собой полную систему вычетов по модулю m.
Известно, что ЖЖ + Ж = МЁД. На какую цифру оканчивается произведение: В·И·Н·Н·И·П·У·Х (разными буквами обозначены разные цифры, одинаковыми – одинаковые)?
В спортивном клубе проходит первенство по теннису. Проигравший партию выбывает из борьбы (ничьих в теннисе не бывает). Пару для следующей партии определяет жребий. Первую партию судил приглашённый судья, а каждую следующую партию должен судить член клуба, не участвующий в ней и не судивший ранее. Могло ли так оказаться, что очередную партию судить некому?
Жили-были двадцать шпионов. Каждый из них написал донос на десять своих коллег.
В компании из семи мальчиков каждый имеет среди остальных не менее трёх братьев. Докажите, что все семеро – братья.
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 368] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |