ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что число x является элементом приведённой системы вычетов тогда и только тогда, когда числа a1, ..., an, определённые сравнениями
x ≡ a1 (mod m1),  ..., x ≡ an (mod mn)  принадлежат приведённым системам вычетов по модулям m1, ..., mn соответственно. Выведите отсюда мультипликативность функции Эйлера.

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 79]      



Задача 60832

 [Китайская теорема об остатках и функция Эйлера]
Темы:   [ Функция Эйлера ]
[ Китайская теорема об остатках ]
Сложность: 4-
Классы: 9,10,11

Докажите, что число x является элементом приведённой системы вычетов тогда и только тогда, когда числа a1, ..., an, определённые сравнениями
x ≡ a1 (mod m1),  ..., x ≡ an (mod mn)  принадлежат приведённым системам вычетов по модулям m1, ..., mn соответственно. Выведите отсюда мультипликативность функции Эйлера.

Прислать комментарий     Решение

Задача 65743

Темы:   [ Количество и сумма делителей числа ]
[ НОД и НОК. Взаимная простота ]
[ Уравнения в целых числах ]
Сложность: 4-
Классы: 8,9,10

Саша выбрал натуральное число  N > 1  и выписал в строчку в порядке возрастания все его натуральные делители:  d1 < ... < ds  (так что  d1 = 1  и
ds = N).  Затем для каждой пары стоящих рядом чисел он вычислил их наибольший общий делитель; сумма полученных  s – 1  чисел оказалась равной
N – 2.  Какие значения могло принимать N?

Прислать комментарий     Решение

Задача 73592

Темы:   [ Количество и сумма делителей числа ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 4-
Классы: 8,9,10

a) Найдите число k, которое делится на 2 и на 9 и имеет всего 14 делителей (включая 1 и k).
б) Докажите, что если заменить 14 на 15, то задача будет иметь несколько решений, а при замене 14 на 17 решений вообще не будет.

Прислать комментарий     Решение

Задача 109712

Темы:   [ Количество и сумма делителей числа ]
[ Разбиения на пары и группы; биекции ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 7,8,9,10

Автор: Храбров А.

Совершенное число, большее 28, делится на 7. Докажите, что оно делится на 49.

Прислать комментарий     Решение

Задача 109720

Темы:   [ Количество и сумма делителей числа ]
[ Разбиения на пары и группы; биекции ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 7,8,9,10

Автор: Храбров А.

Совершенное число, большее 6, делится на 3. Докажите, что оно делится на 9.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 79]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .