ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Найдите объём правильной шестиугольной пирамиды со стороной основания a и радиусом R описанной сферы.

Вниз   Решение


Докажите, что площадь прямоугольного треугольника с острым углом в 15° равна одной восьмой квадрата гипотенузы.

ВверхВниз   Решение


Семнадцать девушек водят хоровод. Сколькими различными способами они могут встать в круг?

ВверхВниз   Решение


На стороне BC треугольника ABC взята точка D такая, что $ \angle$CAD = 2$ \angle$DAB. Радиусы окружностей, вписанных в треугольники ADC и ADB, равны соответственно 3 и 2, а расстояние между центрами этих окружностей равно $ \sqrt{29}$. Найдите AD.

ВверхВниз   Решение


Точка O – центр вписанной окружности треугольника ABC. На сторонах AC и BC выбраны точки M и K соответственно так, что  BK·AB = BO²  и
AM·AB = AO².  Докажите, что точки M, O и K лежат на одной прямой.

ВверхВниз   Решение


Докажите, что из точки A, лежащей вне окружности, можно провести ровно две касательные к окружности, причем длины этих касательных (т. е. расстояния от A до точек касания) равны.

ВверхВниз   Решение


Основанием пирамиды служит параллелограмм, соседние стороны которого равны 9 и 10, а одна из диагоналей равна 11. Противоположные боковые рёбра равны и каждое из больших рёбер равно 10 . Найдите объём пирамиды.

ВверхВниз   Решение


Докажите, что при x≠πn (n– целое) sin x и cos x рациональны тогда и только тогда, когда число tg $ {\dfrac{x}{2}}$ рационально.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 95]      



Задача 116563

Темы:   [ Рациональные и иррациональные числа ]
[ Тождественные преобразования (тригонометрия) ]
[ Доказательство от противного ]
Сложность: 2+
Классы: 10,11

Существует ли такое вещественное α, что число cos α иррационально, а все числа cos 2α, cos 3α, cos 4α, cos 5α рациональны?

Прислать комментарий     Решение

Задача 60845

Темы:   [ Рациональные и иррациональные числа ]
[ Периодические и непериодические дроби ]
[ Доказательство от противного ]
Сложность: 3
Классы: 7,8,9

Пусть число α задаётся десятичной дробью
  а) 0,101001000100001000001...;
  б) 0,123456789101112131415....
Будет ли это число рациональным?

Прислать комментарий     Решение

Задача 61014

Темы:   [ Рациональные и иррациональные числа ]
[ Многочлены (прочее) ]
Сложность: 3
Классы: 8,9,10

Выведите из теоремы 61013 то, что   – иррациональное число.

Прислать комментарий     Решение

Задача 60865

Темы:   [ Рациональные и иррациональные числа ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 3
Классы: 9,10

Докажите, что при x≠πn (n– целое) sin x и cos x рациональны тогда и только тогда, когда число tg $ {\dfrac{x}{2}}$ рационально.

Прислать комментарий     Решение

Задача 35105

Темы:   [ Рациональные и иррациональные числа ]
[ Корни. Степень с рациональным показателем (прочее) ]
[ Показательные функции и логарифмы (прочее) ]
Сложность: 3+
Классы: 10,11

Существуют ли такие иррациональные числа a и b, что степень ab - число рациональное?
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 95]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .