ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Многочлены P, Q и R с действительными коэффициентами, среди которых есть многочлен второй степени и многочлен третьей степени, удовлетворяют равенству P² + Q² = R². Докажите, что все корни одного из многочленов третьей степени – действительные. Докажите, что в любой бесконечной десятичной дроби можно так переставить цифры, что полученная дробь станет рациональным числом. Докажите, что на окружности с центром в точке |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 95]
Докажите, что число рационально тогда и только тогда, когда оно представляется конечной или периодической десятичной дробью.
Докажите, что в любой бесконечной десятичной дроби можно так переставить цифры, что полученная дробь станет рациональным числом.
Один из корней уравнения x² + ax + b = 0 равен 1 +
Дана квадратная сетка на плоскости и треугольник с
вершинами в узлах сетки. Докажите, что тангенс любого угла в
треугольнике — число рациональное.
Докажите, что на окружности с центром в точке
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 95]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке