ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В озере растут лотосы. За сутки каждый лотос делится пополам, и вместо одного лотоса появляются два. Ещё через сутки каждый из получившихся лотосов делится пополам и так далее. Через 30 суток озеро полностью покрылось лотосами. Через какое время озеро было заполнено наполовину?

Вниз   Решение


Стороны выпуклого пятиугольника ABCDE продолжили так, что образовалась пятиконечная звезда AHBKCLDMEN (рис.). Около треугольников — лучей звезды описали окружности. Докажите, что пять точек пересечения этих окружностей, отличных от A, B, C, D, E, лежат на одной окружности.


ВверхВниз   Решение


Докажите, что если  (m, 10) = 1,  то существует репьюнит En, делящийся на m. Будет ли их бесконечно много?

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 16]      



Задача 60782

Тема:   [ Теорема Эйлера ]
Сложность: 3+
Классы: 9,10,11

При помощи теоремы Эйлера найдите число x, удовлетворяющее сравнению  ax + b ≡ 0 (mod m),  где  (a, m) = 1.

Прислать комментарий     Решение

Задача 60787

Темы:   [ Теорема Эйлера ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

Найдите все целые числа a, для которых число  a10 + 1  делится на 10.

Прислать комментарий     Решение

Задача 60823

Темы:   [ Теорема Эйлера ]
[ Китайская теорема об остатках ]
Сложность: 3+
Классы: 9,10,11

Натуральные числа m1, ..., mn попарно взаимно просты. Докажите, что число  x = (m2...mn)φ(m1)  является решением системы
    x ≡ 1 (mod m1),
    x ≡ 0 (mod m2),
        ...
    x ≡ 0 (mod mn).

Прислать комментарий     Решение

Задача 60877

Темы:   [ Теорема Эйлера ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9,10

Докажите, что если  (m, 10) = 1,  то существует репьюнит En, делящийся на m. Будет ли их бесконечно много?

Прислать комментарий     Решение

Задача 60785

Темы:   [ Теорема Эйлера ]
[ Произведения и факториалы ]
Сложность: 4-
Классы: 9,10,11

Докажите, что при любом нечётном n число  2n! – 1  делится на n.

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .