|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В озере растут лотосы. За сутки каждый лотос делится пополам, и вместо одного лотоса появляются два. Ещё через сутки каждый из получившихся лотосов делится пополам и так далее. Через 30 суток озеро полностью покрылось лотосами. Через какое время озеро было заполнено наполовину? Стороны выпуклого пятиугольника ABCDE продолжили так, что образовалась пятиконечная звезда AHBKCLDMEN (рис.). Около треугольников — лучей звезды описали окружности. Докажите, что пять точек пересечения этих окружностей, отличных от A, B, C, D, E, лежат на одной окружности. Докажите, что если (m, 10) = 1, то существует репьюнит En, делящийся на m. Будет ли их бесконечно много? |
Страница: 1 2 3 4 >> [Всего задач: 16]
При помощи теоремы Эйлера найдите число x, удовлетворяющее сравнению ax + b ≡ 0 (mod m), где (a, m) = 1.
Найдите все целые числа a, для которых число a10 + 1 делится на 10.
Натуральные числа m1, ..., mn попарно
взаимно просты. Докажите, что число x = (m2...mn)φ(m1) является решением системы
Докажите, что если (m, 10) = 1, то существует репьюнит En, делящийся на m. Будет ли их бесконечно много?
Докажите, что при любом нечётном n число 2n! – 1 делится на n.
Страница: 1 2 3 4 >> [Всего задач: 16] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|