ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Последовательность a0, a1, a2, ... задана условиями a0 = 0, an+1 = P(an) (n ≥ 0), где P(x) – многочлен с целыми коэффициентами,
P(x) > 0 при x ≥ 0. |
Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 694]
{L0, L1, L2, ...} = {2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, ...} задается равенствами L0=2, L1=1, Ln=Ln-1+ Ln-2 при n>1. Выразите Ln в замкнутой форме через и .
Пусть a1, a2, ... – такая последовательность ненулевых чисел, что (am, an) = a(m, n) (m, n ≥ 1). Докажите, что все обобщенные биномиальные коэффициенты являются целыми числами.
а) J(2n) = 2J(n) - 1; б) J(2n + 1) = 2J(n) + 1; в) если n = (1bm - 1bm - 2...b1b0)2, то J(n) = (bm - 1bm - 2...b1b01)2.
Последовательность a0, a1, a2, ... задана условиями a0 = 0, an+1 = P(an) (n ≥ 0), где P(x) – многочлен с целыми коэффициентами,
P(x) > 0 при x ≥ 0.
Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 694] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|