ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи При каких n многочлен (x + 1)n – xn – 1 делится на: Докажете, что в звезде, изображенной на картинке, не могут быть выполнены одновременно неравенства BC > AB, DE > CD, FG > EF, HK > GH, LA > KL. Найти все прямоугольники, которые можно разрезать на 13 равных квадратов.
В треугольнике ABC отношение стороны BC к стороне AC равно
3, а
Плоский многоугольник A1A2...An составлен из n твёрдых стержней, соединенных шарнирами. Доказать, что если n > 4, то его можно деформировать в треугольник. Многоугольник, описанный около окружности радиуса r,
разрезан на треугольники (произвольным образом). Докажите, что сумма
радиусов вписанных окружностей этих треугольников больше r.
При каких A и B многочлен Axn+1 + Bxn + 1 имеет число x = 1 не менее чем двукратным корнем? |
Страница: << 1 2 3 4 >> [Всего задач: 19]
При каких A и B многочлен Axn+1 + Bxn + 1 имеет число x = 1 не менее чем двукратным корнем?
Доказать, что если
Докажите, что корень a многочлена P(x) имеет кратность больше 1 тогда и только тогда, когда P(a) = 0 и P'(a) = 0.
При каких n многочлен (x + 1)n – xn – 1 делится на:
Докажите, что многочлен P(x) делится на свою производную тогда и только тогда, когда P(x) имеет вид P(x) = an(x – x0)n.
Страница: << 1 2 3 4 >> [Всего задач: 19]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке