Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Переложите пирамиду из 10 кубиков (см. рисунок) так, чтобы её форма осталась прежней, но каждый кубик соприкасался только с новыми кубиками.

Вниз   Решение


В правильной треугольной призме плоскость, проходящая через сторону одного основания и противоположную ей вершину другого основания, образует с плоскостью основания угол, равный 45o . Площадь сечения равна S . Найдите объём призмы.

ВверхВниз   Решение


Корабль с постоянной скоростью проплывает мимо небольшого острова. Капитан каждый час измеряет расстояние до острова.
В 12, 14 и 15 часов расстояния равнялись 7, 5 и 11 километров соответственно.
Каким было расстояние до острова в 13 часов? Чему оно будет равно в 16 часов?

ВверхВниз   Решение


Найдите объём правильной четырёхугольной призмы, если её диагональ образует с плоскостью боковой грани угол 30o , а сторона основания равна a .

ВверхВниз   Решение


На плоскости отмечены три точки, служащие изображениями (параллельными проекциями) трёх последовательных вершин правильного шестиугольника. Постройте изображения остальных вершин шестиугольника.

ВверхВниз   Решение


Постройте многочлены  f(x) степени не выше 2, которые удовлетворяют условиям:
  а)   f(0) = 1,   f(1) = 3,   f(2) = 3;
  б)   f(–1) = –1,   f(0) = 2,   f(1) = 5;
  в)   f(–1) = 1,   f(0) = 0,   f(2) = 4.

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 16]      



Задача 61048

Темы:   [ Интерполяционный многочлен Лагранжа ]
[ Многочлен n-й степени имеет не более n корней ]
Сложность: 3
Классы: 8,9,10

Решите уравнение  

Прислать комментарий     Решение

Задача 61049

Темы:   [ Интерполяционный многочлен Лагранжа ]
[ Многочлен n-й степени имеет не более n корней ]
Сложность: 3
Классы: 8,9,10

Докажите тождество  

Прислать комментарий     Решение

Задача 61050

Тема:   [ Интерполяционный многочлен Лагранжа ]
Сложность: 3
Классы: 8,9,10

Пусть  x1 < x2 < ... < xn  – действительные числа. Постройте многочлены   f1(x),  f2(x), ...,  fn(x)  степени  n – 1,  которые удовлетворяют условиям   fi(xi) = 1  и   fi(xj) = 0  при  i ≠ j  (i, j = 1, 2, ..., n).

Прислать комментарий     Решение

Задача 61055

Тема:   [ Интерполяционный многочлен Лагранжа ]
Сложность: 3+
Классы: 8,9,10

Постройте многочлены  f(x) степени не выше 2, которые удовлетворяют условиям:
  а)   f(0) = 1,   f(1) = 3,   f(2) = 3;
  б)   f(–1) = –1,   f(0) = 2,   f(1) = 5;
  в)   f(–1) = 1,   f(0) = 0,   f(2) = 4.

Прислать комментарий     Решение

Задача 61056

Темы:   [ Интерполяционный многочлен Лагранжа ]
[ Задачи на движение ]
Сложность: 4-
Классы: 8,9,10,11

Корабль с постоянной скоростью проплывает мимо небольшого острова. Капитан каждый час измеряет расстояние до острова.
В 12, 14 и 15 часов расстояния равнялись 7, 5 и 11 километров соответственно.
Каким было расстояние до острова в 13 часов? Чему оно будет равно в 16 часов?

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .