ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Два корабля двигаются с постоянными скоростями. Расстояния между ними, измеренные в 12, 14 и 15 часов, равнялись
5, 7 и 2 километра соответственно. Каким было расстояние между кораблями в 13 часов?

   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 16]      



Задача 61057

Темы:   [ Интерполяционный многочлен Лагранжа ]
[ Задачи на движение ]
Сложность: 4-
Классы: 8,9,10,11

Два корабля двигаются с постоянными скоростями. Расстояния между ними, измеренные в 12, 14 и 15 часов, равнялись
5, 7 и 2 километра соответственно. Каким было расстояние между кораблями в 13 часов?

Прислать комментарий     Решение

Задача 61448

 [Интерполяционная формула Ньютона]
Темы:   [ Интерполяционный многочлен Ньютона ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4
Классы: 10,11

а) Докажите, что для любого многочлена f(x) степени n существует единственное представление его в виде

Биномиальный коэффициент      интерпретируется как многочлен от переменной x. В частности, нижний индекс у биномиального коэффициента может быть любым действительным числом.

б) Докажите, что коэффициенты  d0, d1, ..., dn  в этом представлении вычисляются по формуле  dk = Δkf(0)  (0 ≤ k ≤ n).

Прислать комментарий     Решение

Задача 61449

 [Целозначные многочлены]
Темы:   [ Интерполяционный многочлен Ньютона ]
[ Треугольник Паскаля и бином Ньютона ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Целочисленные и целозначные многочлены ]
Сложность: 4
Классы: 10,11

Пусть многочлен f(x) степени n принимает целые значения в точках  x = 0, 1, ..., n.
Докажите, что     где  d0, d1, ..., dn  – некоторые целые числа.

Прислать комментарий     Решение

Задача 65253

Темы:   [ Интерполяционный многочлен Лагранжа ]
[ Многочлен n-й степени имеет не более n корней ]
[ Возрастание и убывание. Исследование функций ]
[ Примеры и контрпримеры. Конструкции ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 9,10,11

Автор: Тыщук К.

Дано натуральное число  n > 3.  Назовём набор из n точек на координатной плоскости допустимым, если их абсциссы различны, и каждая из этих точек окрашена либо в красный, либо в синий цвет. Будем говорить, что многочлен P(x) разделяет допустимый набор точек, если либо выше графика P(x) нет красных точек, а ниже – нет синих, либо наоборот (на самом графике могут лежать точки обоих цветов). При каком наименьшем k любой допустимый набор из n точек можно разделить многочленом степени не более k?
Прислать комментарий     Решение


Задача 109883

Темы:   [ Интерполяционный многочлен Лагранжа ]
[ Уравнения в целых числах ]
Сложность: 4+
Классы: 10,11

Автор: Дужин С.В.

Найдите все такие натуральные n, что при некоторых различных натуральных a, b, c и d среди чисел

есть по крайней мере два числа, равных n.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .