|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Ссылки по теме:
Статья на тему "Индукция" Материалы по этой теме: Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Длины сторон треугольника образуют арифметическую прогрессию. a1, a2, ..., an — произвольные натуральные числа. Обозначим через bk количество чисел из набора a1, a2, ..., an, удовлетворяющих условию: ai ≥ k. Доказать, что a1 + a2 + ... + an = b1 + b2 + ... а) Докажите, что б) Найдите эти представления в явном виде для n = 2, 3, 4, 5. в) Выразите sinnx при чётном n в виде |
Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 416]
Пусть a0 – целое, a1, ..., an – натуральные числа. Определим две последовательности
а) Докажите, что б) Найдите эти представления в явном виде для n = 2, 3, 4, 5. в) Выразите sinnx при чётном n в виде
На плоскости проведены n прямых, среди которых нет параллельных. Никакие три из них не пересекаются в одной точке. Докажите, что существует такая n-звенная несамопересекающаяся ломаная A0A1A2...An, что на каждой из n прямых лежит ровно по одному звену этой ломаной.
Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 416] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|