ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пусть F1, F2, F3, ... – последовательность выпуклых четырёхугольников, где Fk+1 (при k = 1, 2, 3, ...) получается так: Fk разрезают по диагонали, одну из частей переворачивают и склеивают по линии разреза с другой частью. Какое наибольшее количество различных четырёхугольников может содержать эта последовательность? (Различными считаются многоугольники, которые нельзя совместить движением.) Среди углов каждой боковой грани пятиугольной призмы есть угол φ. Найдите все возможные значения φ. На боковых сторонах AB и AC равнобедренного треугольника ABC построены вне его равные треугольники AMB и ANC (AM = AN). Многочлен P(x) при всех действительных x принимает только
положительные значения. |
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 138]
Многочлен P(x) при всех действительных x принимает только
положительные значения.
Докажите, что для любого многочлена P(x) степени m существует единственный многочлен Q(x) степени m + 1 , для которого ΔQ(x) = P(x) и Q(0) = 0.
а) Докажите, что б) Докажите, что если p и q – различные числа и p + q = 1, то
Дан многочлен P(x) степени n со старшим коэффициентом, равным 1. Известно, что если x – целое число, то P(x) – целое число, кратное p
Натуральный ряд представлен в виде объединения некоторого множества попарно непересекающихся целочисленных бесконечных арифметических прогрессий с
положительными разностями d1, d2, d3, ... . Может ли случиться, что при этом сумма
1/d1 + 1/d2 + ... + 1/dk не превышает 0,9? Рассмотрите случаи:
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 138]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке