Версия для печати
Убрать все задачи
Докажите формулу:
arccos
x =


Решение
Каждую пятницу десять джентльменов приходят в клуб, и каждый отдает швейцару свою шляпу. Каждая шляпа точно впору своему хозяину, но двух одинаковых по размеру шляп нет. Уходят джентльмены по одному в случайном порядке.
Провожая очередного джентльмена, швейцар клуба пробует надеть ему на голову первую попавшуюся шляпу. Если налезает, джентльмен уходит в этой шляпе. Если мала, то швейцар пробует следующую случайную шляпу из оставшихся. Если все оставшиеся шляпы оказались малы, швейцар говорит бедняге: "Сэр, сегодня шляпа вам не к лицу", и джентльмен отправляется домой с непокрытой головой. Найдите вероятность того, что в следующую пятницу у швейцара не останется ни одной шляпы.


Решение
По кругу выписано несколько чисел. Если для некоторых четырёх идущих подряд чисел a, b, c, d произведение чисел a – d и b – c отрицательно, то числа b и c можно поменять местами. Докажите, что такие операции можно проделать лишь конечное число раз.


Решение
Докажите, что имеют место следующие соотношения:
cos arcsin x = ; sin arccos x = ; |
tg arcctg x = ; ctg arctg x = ; |
cos arctg x = ; sin arctg x = ; |
cos arcctg x = ; sin arcctg x = . |

Решение