ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите неравенство   (a + b + c + d + 1)² ≥ 4(a² + b² + c² + d²)  при  a, b, c, d ∈ [0, 1].

   Решение

Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 488]      



Задача 34920

Темы:   [ НОД и НОК. Взаимная простота ]
[ Принцип крайнего (прочее) ]
[ Простые числа и их свойства ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8,9

Дано n попарно взаимно простых чисел, больших 1 и меньших  (2n – 1)².  Докажите, что среди них обязательно есть простое число.

Прислать комментарий     Решение

Задача 35142

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 3+
Классы: 9,10

На плоскости дано несколько прямых (больше одной), никакие две из которых не параллельны.
Докажите, что либо найдётся точка, через которую проходят ровно две из данных прямых, либо все прямые проходят через одну точку.

Прислать комментарий     Решение

Задача 35199

Темы:   [ Деревья ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 7,8,9

В стране несколько городов (больше одного); некоторые пары городов соединены дорогами. Известно, что из каждого города можно попасть в любой другой, проезжая по нескольким дорогам. Кроме того, дороги не образуют циклов, то есть если выйти из некоторого города по какой-то дороге и далее двигаться так, чтобы не проходить по одной дороге дважды, то невозможно возвратиться в начальный город. Докажите, что в этой стране найдутся хотя бы два города, каждый из которых соединен дорогой ровно с одним городом.

Прислать комментарий     Решение

Задача 35498

Темы:   [ Процессы и операции ]
[ Принцип крайнего (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 8,9

Можно ли все натуральные числа разбить на пары так, чтобы сумма чисел в каждой паре была квадратом целого числа?
Прислать комментарий     Решение


Задача 61370

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3+
Классы: 8,9,10

Докажите неравенство   (a + b + c + d + 1)² ≥ 4(a² + b² + c² + d²)  при  a, b, c, d ∈ [0, 1].

Прислать комментарий     Решение

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 488]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .