ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите неравенство для положительных значений переменных:   2(a³ + b³ + c³) ≥ ab(a + b) + ac(a + c) + bc(b + c).

   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 590]      



Задача 60307

Темы:   [ Алгебраические неравенства (прочее) ]
[ Произведения и факториалы ]
Сложность: 3
Классы: 8,9,10

Докажите неравенство для натуральных n:  

Прислать комментарий     Решение

Задача 61366

Темы:   [ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9,10

Докажите неравенство     при  |x|, |y| < 1.

Прислать комментарий     Решение

Задача 61371

Темы:   [ Алгебраические неравенства (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 8,9,10

Докажите неравенство для положительных значений переменных:   x4 + y4 + z² + 1 ≥ 2x(xy² – x + z + 1).

Прислать комментарий     Решение

Задача 61375

Темы:   [ Алгебраические неравенства (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 8,9,10,11

Докажите неравенство для положительных значений переменных:   a²(1 + b4) + b²(1 + a4) ≤ (1 + a4)(1 + b4).

Прислать комментарий     Решение

Задача 61378

Тема:   [ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Докажите неравенство для положительных значений переменных:   2(a³ + b³ + c³) ≥ ab(a + b) + ac(a + c) + bc(b + c).

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 590]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .