Страница:
<< 47 48 49 50
51 52 53 >> [Всего задач: 694]
Для n = 1, 2, 3 будем называть числом n-го типа любое число, которое либо равно 0, либо входит в бесконечную геометрическую прогрессию
1, (n + 2), (n + 2)², ..., либо является суммой нескольких различных её членов. Докажите, что любое натуральное число можно представить в виде суммы числа первого типа, числа второго типа и числа третьего типа.
|
|
Сложность: 4+ Классы: 8,9,10
|
Последовательность
a1
, a2
,..,a2000
действительных чисел такова, что для
любого натурального
n ,
1
n2000
, выполняется равенство
a13+a23+..+an3=(a1+a2+..+an)2.
Докажите, что все члены этой последовательности – целые числа.
|
|
Сложность: 4+ Классы: 10,11
|
Последовательность чисел
x0,
x1,
x2,...задается условиями
x0 = 1,
xn + 1 =
axn (
n 0).
Найдите наибольшее число
a, для
которого эта последовательность имеет предел. Чему равен этот
предел для такого
a?
|
|
Сложность: 4+ Классы: 10,11
|
Рассмотрим равенства:
2 + |
= |
+ , |
(2 + )2 |
= |
+ , |
(2 + )3 |
= |
+ , |
(2 + )4 |
= |
+ . |
Обобщите результат наблюдения и докажите возникшие у
вас догадки.
|
|
Сложность: 4+ Классы: 8,9,10
|
Дана четвёрка ненулевых чисел
a,
b,
c,
d. Из неё получается новая
ab,
bc,
cd,
da по
следующему правилу: каждое число умножается на следующее, четвёртое — на
первое. Из новой четвёрки по этому же правилу получается третья и т.д.
Доказать, что в полученной последовательности четвёрок никогда не встретится
вновь четверка
a,
b,
c,
d, кроме случая, когда
a =
b =
c =
d = 1.
Страница:
<< 47 48 49 50
51 52 53 >> [Всего задач: 694]