Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Какое наибольшее значение может принимать выражение     где a, b, c – попарно различные ненулевые цифры?

Вниз   Решение


Охотник рассказал приятелю, что видел в лесу волка с метровым хвостом. Тот рассказал другому приятелю, что в лесу видели волка с двухметровым хвостом. Передавая новость дальше, простые люди увеличивали длину хвоста вдвое, а творческие – втрое. В результате по телевизору сообщили о волке с хвостом длиной 864 метра. Сколько простых и сколько творческих людей "отрастили" волку хвост?

ВверхВниз   Решение


Записаны шесть положительных несократимых дробей, сумма числителей которых равна сумме их знаменателей. Паша перевёл каждую из неправильных дробей в смешанное число. Обязательно ли найдутся два числа, у которых одинаковы либо целые части, либо дробные части?

ВверхВниз   Решение


Сравнив дроби  111110/111111222221/222223333331/333334,  расположите их в порядке возрастания.

ВверхВниз   Решение


На экране компьютера стоят в ряд 200 человек. На самом деле эта картинка составлена из 100 фрагментов, на каждом – пара: взрослый и ребёнок пониже ростом. Разрешается в каждом из фрагментов изменить масштаб, уменьшив при этом одновременно рост взрослого и ребёнка в одинаковое целое число раз (масштабы разных фрагментов можно менять независимо друг от друга). Докажите, что это можно сделать так, что на общей картинке все взрослые будут выше всех детей.

ВверхВниз   Решение


Ваня считает, что дроби "сокращают", зачёркивая одинаковые цифры в числителе и знаменателе. Серёжа заметил, что иногда Ваня получает верные равенства, например,  49/98 = 4/8.  Найдите все правильные дроби с числителем и знаменателем, состоящими из двух ненулевых цифр, которые можно так "сократить".

ВверхВниз   Решение


Пусть две прямые пересекаются под углом α. Докажите, что при повороте на угол α (в одном из направлений) относительно произвольной точки одна из этих прямых перейдёт в прямую, параллельную другой.

ВверхВниз   Решение


Разрежьте изображённую на рисунке доску на четыре одинаковые части, чтобы каждая из них содержала три заштрихованные клетки.

ВверхВниз   Решение


Из шахматной доски вырезали две клетки – a1 и h8. Можно ли оставшуюся часть доски покрыть 31 косточкой домино так, чтобы каждая косточка покрывала ровно две клетки доски?

ВверхВниз   Решение


Bыпуклый n-угольник P, где  n > 3,  разрезан на равные треугольники диагоналями, не пересекающимися внутри него.
Каковы возможные значения n, если n-угольник вписанный?

ВверхВниз   Решение


Вычислите несколько первых многочленов Фибоначчи и Люка (определения многочленов Фибоначчи и Люка смотри здесь). Какие значения эти многочлены принимают при x = 1? Докажите, что многочлены Люка связаны с многочлены Фибоначчи соотношениями:
  а)  Ln(x) = Fn–1(x) + Fn+1(x)  (n ≥ 1);
  б)  Fn(x)(x² + 4) = Ln–1(x) + Ln+1(x)  (n ≥ 1);
  в)  F2n(x) = Ln(x)Fn(x)  (n ≥ 0);
  г)  (Ln(x))² + (Ln+1(x))² = (x² + 4)F2n+1(x)  (n ≥ 0);
  д)  Fn+2(x) + Fn–2(x) = (x² + 2)Fn(x).

Вверх   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 233]      



Задача 61468

 [Многочлены Фибоначчи и Люка]
Темы:   [ Рекуррентные соотношения (прочее) ]
[ Специальные многочлены (прочее) ]
Сложность: 4
Классы: 10,11

Вычислите несколько первых многочленов Фибоначчи и Люка (определения многочленов Фибоначчи и Люка смотри здесь). Какие значения эти многочлены принимают при x = 1? Докажите, что многочлены Люка связаны с многочлены Фибоначчи соотношениями:
  а)  Ln(x) = Fn–1(x) + Fn+1(x)  (n ≥ 1);
  б)  Fn(x)(x² + 4) = Ln–1(x) + Ln+1(x)  (n ≥ 1);
  в)  F2n(x) = Ln(x)Fn(x)  (n ≥ 0);
  г)  (Ln(x))² + (Ln+1(x))² = (x² + 4)F2n+1(x)  (n ≥ 0);
  д)  Fn+2(x) + Fn–2(x) = (x² + 2)Fn(x).

Прислать комментарий     Решение

Задача 61472

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Специальные многочлены (прочее) ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4
Классы: 10,11

Укажите явный вид коэффициентов в многочленах Fn(x) и Ln(x). Решите задачи 60581 и 60582, используя многочлены Фибоначчи.
Про многочлены Фибоначчи и Люка смотри статьи в справочнике.

Прислать комментарий     Решение

Задача 61476

Тема:   [ Линейные рекуррентные соотношения ]
Сложность: 4
Классы: 9,10,11

Садовник, привив черенок редкого растения, оставляет его расти два года, а затем ежегодно берет от него по 6 черенков. С каждым новым черенком он поступает аналогично. Сколько будет растений и черенков на n-ом году роста первоначального растения?

Прислать комментарий     Решение

Задача 61503

Темы:   [ Числа Фибоначчи ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4
Классы: 9,10,11

Докажите, что бесконечная сумма

  0, 1
+ 0, 01
+ 0, 002
+ 0, 0003
+ 0, 00005
+ 0, 000008
+ 0, 0000013
  ...

сходится к рациональному числу.

Прислать комментарий     Решение

Задача 78272

Темы:   [ Рекуррентные соотношения ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 10,11

Дан произвольный набор из +1 и -1 длиной 2k. Из него получается новый по следующему правилу: каждое число умножается на следующее за ним; последнее 2k-тое число умножается на первое. С новым набором из 1 и -1 проделывается то же самое и т.д. Доказать, что в конце концов получается набор, состоящий из одних единиц.
Прислать комментарий     Решение


Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 233]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .