|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На сторонах AD и CD параллелограмма ABCD расположены точки M и N соответственно, причём AM : MD = 2 : 7, CN : ND = 3 : 5. Прямые CM и BN пересекаются в точке O. Найдите отношения ON : OB и OC : OM. Существует ли такое натуральное число n, большее 1, что значение выражения Петя разрезал прямоугольный лист бумаги по прямой на две части. Затем одну часть снова разрезал по прямой на две. Потом одну из получившихся частей опять разрезал на две части, и так далее, всего он резал бумагу сто раз. Потом Петя подсчитал суммарное количество вершин у всех получившихся многоугольников – получилось всего 302 вершины. Могло ли так быть? Докажите, что если фигура имеет две перпендикулярные оси симметрии, то она имеет центр симметрии. Пусть (1 + а) |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 38]
а)
Рассматривается последовательность слов, состоящих из букв "A" и "B".
Первое слово в последовательности – "A", k-е слово получается из (k–1)-го с помощью следующей операции: каждое "A" заменяется на "AAB", каждое "B" – на "A". Легко видеть, что каждое слово является началом следующего, тем самым получается бесконечная последовательность букв: AABAABAAABAABAAAB...
a1 = 1, an + 1 = an + Докажите, что
а) эта последовательность неограничена; б) a9000 > 30; в) найдите предел
Пусть a и b – два положительных числа, причём a < b. Построим по этим числам две последовательности {an} и {bn} по правилам: a0 = a, b0 = b, an+1 =
Докажите, что обе эти последовательности имеют один и тот же предел. Этот предел называется арифметико-геометрическим средним чисел a, b и обозначается μ(a, b).
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 38] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|