Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Делится ли на 1999 сумма чисел 1 + 2 + 3 +...+ 1999?

Вниз   Решение


Три купчихи – Сосипатра Титовна, Олимпиада Карповна и Поликсена Уваровна – сели пить чай. Олимпиада Карповна и Сосипатра Титовна выпили вдвоём 11 чашек, Поликсена Уваровна и Олимпиада Карповна – 15, а Сосипатра Титовна и Поликсена Уваровна – 14. Сколько чашек чая выпили все три купчихи вместе?

ВверхВниз   Решение


Докажите тождество: 13 + 23 +...+ n3 = (1 + 2 +...+ n)2.

ВверхВниз   Решение


а) Из точки A проведены прямые, касающиеся окружности S в точках B и C. Докажите, что центр вписанной окружности треугольника ABC и центр его вневписанной окружности, касающейся стороны BC, лежат на окружности S.
б) Докажите, что окружность, проходящая через вершины B и C любого треугольника ABC и центр O его вписанной окружности, высекает на прямых AB и AC равные хорды.

ВверхВниз   Решение


Дан описанный четырёхугольник. Точки касания его вписанной окружности со сторонами последовательно соединены отрезками. В получившиеся треугольники вписаны окружности. Докажите, что диагонали четырёхугольника с вершинами в центрах этих окружностей взаимно перпендикулярны.

ВверхВниз   Решение


На сторонах угла ABC, равного 120o, отложены отрезки AB = BC = 4. Через точки A, B, C проведена окружность. Найдите её радиус.

ВверхВниз   Решение


На плоскости отметили 30 точек, никакие три из которых не лежат на одной прямой, и провели семь красных прямых, не проходящих через отмеченные точки. Могло ли случиться, что каждый отрезок, соединяющий какие-то две отмеченные точки, пересекается хоть с одной красной прямой?

ВверхВниз   Решение


Докажите, что в треугольнике угол A острый тогда и только тогда, когда ma > a/2.

ВверхВниз   Решение


Решите уравнение:

cos$\displaystyle \pi$$\displaystyle {\frac{x}{31}}$cos 2$\displaystyle \pi$$\displaystyle {\frac{x}{31}}$cos 4$\displaystyle \pi$$\displaystyle {\frac{x}{31}}$cos 8$\displaystyle \pi$$\displaystyle {\frac{x}{31}}$cos 16$\displaystyle \pi$$\displaystyle {\frac{x}{31}}$ = $\displaystyle {\textstyle\frac{1}{32}}$.


ВверхВниз   Решение


Диагонали AC и BD вписанного в окружность четырёхугольника ABCD взаимно перпендикулярны и пересекаются в точке M. Известно, что  AM = 3,  BM = 4  и  CM = 6.  Найдите CD.

ВверхВниз   Решение


Угол с вершиной C равен 120o. Окружность радиуса R касается сторон угла в точках A и B. Найдите AB.

ВверхВниз   Решение


Объясните, как покрасить часть точек плоскости так, чтобы на каждой окружности радиуса 1 см было ровно четыре покрашенные точки.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 104117

Тема:   [ Наглядная геометрия ]
Сложность: 2
Классы: 7,8

В доску вбито 20 гвоздиков (см. рисунок). Расстояние между любыми соседними равно 1 дюйму. Натяните нитку длиной 19 дюймов от первого гвоздика до второго так, чтобы она прошла через все гвоздики.

Прислать комментарий     Решение

Задача 102860

Темы:   [ Наглядная геометрия ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 2+
Классы: 6,7,8

Можно ли в прямоугольник 5×6 поместить прямоугольник 3×8?

Прислать комментарий     Решение

Задача 115380

Темы:   [ Наглядная геометрия ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 3-
Классы: 5,6,7

На вертикальную ось надели несколько колес со спицами. Вид сверху изображен на левом рисунке.


После этого колеса повернули. Новый вид сверху изображен на рисунке справа.
Могло ли колес быть:  а) три;  б) два?

Прислать комментарий     Решение

Задача 64189

Тема:   [ Наглядная геометрия ]
Сложность: 3
Классы: 6,7,8

Объясните, как покрасить часть точек плоскости так, чтобы на каждой окружности радиуса 1 см было ровно четыре покрашенные точки.

Прислать комментарий     Решение

Задача 64688

Темы:   [ Наглядная геометрия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7

Автор: Фольклор

Четыре одинаковых кубика расположили на столе так, как показано на рисунке. Одна из граней каждого кубика покрашена в чёрный цвет. За один шаг разрешается повернуть одинаковым образом оба кубика из одного ряда (вертикального или горизонтального). Докажите, что, независимо от начального расположения чёрных граней, за несколько таких шагов можно расположить кубики чёрными гранями вверх.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .