Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Сколько корней на отрезке  [0, 1]  имеет уравнение   8x(1 – 2x²)(8x4 – 8x² + 1) = 1?

Вниз   Решение


Какие выпуклые фигуры могут содержать прямую?

ВверхВниз   Решение


В магазин привезли 25 ящиков с тремя разными сортами яблок (в каждом ящике яблоки только одного сорта). Докажите, что среди них есть по крайней мере 9 ящиков с яблоками одного и того же сорта.

ВверхВниз   Решение


Докажите, что при нечётном  n > 1  справедливо равенство  

ВверхВниз   Решение


По заданной последовательности положительных чисел  q1,..., qn, ...  строится последовательность многочленов следующим образом:
    f0(x) = 1,
    f1(x) = x,
      ...
    fn+1(x) = (1 + qn)xfn(x) – qnfn–1(x).
Докажите, что все вещественные корни n-го многочлена заключены между –1 и 1.

ВверхВниз   Решение


Для любого треугольника можно вычислить сумму квадратов тангенсов половин его углов. Докажите, что эта сумма
  а) меньше 2 для любого остроугольного треугольника;
  б) не меньше 2 для любого тупоугольного треугольника, величина тупого угла которого больше или равна  2 arctg 4/3;  а среди треугольников с тупым углом, меньшим  2 arctg 4/3,  имеются и такие, сумма квадратов тангенсов половин углов которых больше 2, и такие, сумма квадратов тангенсов половин углов которых меньше 2.

ВверхВниз   Решение


Докажите, что   .

ВверхВниз   Решение


Пусть xy + yz + xz = 1. Докажите равенство:

$\displaystyle {\dfrac{x}{1-x^2}}$ + $\displaystyle {\dfrac{y}{1-y^2}}$ + $\displaystyle {\dfrac{z}{1-z^2}}$ = $\displaystyle {\dfrac{4xyz}{(1-x^2)(1-y^2)(1-z^2)}}$.


ВверхВниз   Решение


Рассмотрим число     Докажите, что оно

а) меньше 1/10;   б) меньше 1/12;   в) больше 1/15.

ВверхВниз   Решение


Докажите неравенство     при любых натуральных n и k.

ВверхВниз   Решение


Автор: Храбров А.

Положительные числа a, b, c и d удовлетворяют условию   2(a + b + c + d) ≥ abcd.   Докажите, что  a² + b² + c² + d² ≥ abcd.

Вверх   Решение

Задачи

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 590]      



Задача 64364

Тема:   [ Неравенство Коши ]
Сложность: 4-
Классы: 10,11

Автор: Храбров А.

Положительные числа a, b, c и d удовлетворяют условию   2(a + b + c + d) ≥ abcd.   Докажите, что  a² + b² + c² + d² ≥ abcd.

Прислать комментарий     Решение

Задача 64485

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Сумма восьми чисел равна 4/3. Оказалось, что сумма каждых семи чисел из этих восьми – положительна. Какое наименьшее целое значение может принимать наименьшее из данных чисел?

Прислать комментарий     Решение

Задача 65617

Темы:   [ Неравенство Коши ]
[ Разложение на множители ]
Сложность: 4-
Классы: 9,10,11

Числа а, b и с лежат в интервале  (0, 1).  Докажите, что  a + b + c + 2abc > ab + bc + ca + 2.

Прислать комментарий     Решение

Задача 65849

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Десятичная система счисления ]
Сложность: 4-
Классы: 9,10

Существует ли такое натуральное n, что десятичная запись числа 2n начинается цифрой 5, а десятичная запись числа 5n начинается цифрой 2?

Прислать комментарий     Решение

Задача 65853

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Десятичная система счисления ]
Сложность: 4-
Классы: 9,10,11

Существуют ли такие натуральные n и k, что десятичная запись числа 2n начинается числом 5k, а десятичная запись числа 5n начинается числом 2k?

Прислать комментарий     Решение

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 590]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .