Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

С числом разрешается производить две операции: ``увеличить в два раза'' и ``увеличить на 1''. За какое наименьшее число операций можно из числа 0 получить
а) число 100; б) число n?

Вниз   Решение


Дан треугольник ABC, в котором  AC = BC = 1,  ∠B = 45°.  Найдите угол A.

ВверхВниз   Решение


На доске были записаны числа 3, 9 и 15. Разрешалось сложить два записанных числа, вычесть из этой суммы третье, а результат записать на доску вместо того числа, которое вычиталось. После многократного выполнения такой операции на доске оказались три числа, наименьшее из которых было 2013. Каковы были два остальных числа?

ВверхВниз   Решение


В окружность вписан неправильный многоугольник. Если вершина A разбивает дугу, заключенную между двумя другими вершинами, на две неравные части, то такая вершина A называется неустойчивой. Каждую секунду какая-нибудь неустойчивая вершина перепрыгивает в середину своей дуги. В результате каждую секунду образуется новый многоугольник. Докажите, что сколько бы секунд ни прошло, многоугольник никогда не будет равным исходному.

ВверхВниз   Решение


В треугольник ABC помещены три равных окружности, каждая из которых касается двух сторон треугольника. Все три окружности имеют одну общую точку. Найдите радиусы этих окружностей, если радиусы вписанной и описанной окружностей треугольника ABC равны r и R.

ВверхВниз   Решение


Автор: Чиник В.И.

Точка D – центр описанной окружности остроугольного треугольника ABC. Окружность, проходящая через точки A, B и D, пересекает стороны AC и BC в точках M и N соответственно. Докажите, что описанные окружности треугольников ABD и MNC равны.

ВверхВниз   Решение


В треугольнике ABC проведены высоты AH1, BH2 и CH3. Точка M – середина отрезка H2H3. Прямая AM пересекает отрезок H2H1 в точке K.
Докажите, что точка K принадлежит средней линии треугольника ABC, параллельной AC.

ВверхВниз   Решение


В треугольнике ABC  ∠CAB = 75°,  ∠ABC = 45°.  На стороне CA берётся точка K, а на стороне CB – точка M,  CK : AK = 3 : 1.
Найдите   KM : AB,  если это отношение меньше ¾, а прямая MK отсекает от треугольника ABC треугольник, ему подобный.

ВверхВниз   Решение


В остроугольном треугольнике ABC проведены высоты AA1 и CC1. Точки A2 и C2 симметричны A1 и C1 относительно середин сторон BC и AB. Докажите, что прямая, соединяющая вершину B с центром O описанной окружности, делит отрезок A2C2 пополам.

ВверхВниз   Решение


Остроугольный равнобедренный треугольник и трапеция вписаны в окружность. Одно основание трапеции является диаметром окружности, а боковые стороны параллельны боковым сторонам треугольника. Найдите отношение площадей трапеции и треугольника.

ВверхВниз   Решение


В треугольнике АВС точки М и N – середины сторон AC и ВС соответственно. Известно, что точка пересечения медиан треугольника AMN является точкой пересечения высот треугольника АВС. Найдите угол АВС.

ВверхВниз   Решение


Высоты равнобедренного остроугольного треугольника, в котором AB = BC, пересекаются в точке H.
Найдите площадь треугольника ABC, если  AH = 5,  а высота AD равна 8.

ВверхВниз   Решение


На каждой стороне правильного треугольника взято по точке. Стороны треугольника с вершинами в этих точках перпендикулярны сторонам исходного треугольника. В каком отношении каждая из взятых точек делит сторону исходного треугольника?

ВверхВниз   Решение


Докажите, что расстояние от вершины треугольника до точки пересечения высот вдвое больше, чем расстояние от центра описанной окружности до противоположной стороны.

ВверхВниз   Решение


Высоты AD и BE остроугольного треугольника ABC пересекаются в точке H. Описанная окружность треугольника ABH, пересекает стороны AC и BC в точках F и G соответственно. Найдите FG, если  DE = 5 см.

ВверхВниз   Решение


В клетки таблицы m×n вписаны некоторые числа. Разрешается одновременно менять знак у всех чисел некоторого столбца или некоторой строки. Доказать, что многократным повторением этой операции можно превратить данную таблицу в такую, у которой суммы чисел, стоящих в каждом столбце и каждой строке, неотрицательны.

ВверхВниз   Решение


Окружность радиуса R с центром в точке O проходит через вершины A и B треугольника ABC, пересекает отрезок BC в точке M и касается прямой AC в точке A. Найдите CM, зная, что  ∠ACO = α,  ∠MAB = β.

ВверхВниз   Решение


На диагонали AC квадрата ABCD взята точка M, причём  AM = AB.  Через точку M проведена прямая, перпендикулярная прямой AC и пересекающая BC в точке H. Докажите, что  BH = HM = MC.

ВверхВниз   Решение


Отрезок AD – диаметр описанной окружности остроугольного треугольника ABC. Через точку H пересечения высот этого треугольника провели прямую, параллельную стороне BC, которая пересекает стороны AB и AC в точках E и F соответственно.
Докажите, что периметр треугольника DEF в два раза больше стороны BC.

ВверхВниз   Решение


Дан выпуклый многоугольник A1...An. Докажите, что описанная окружность некоторого треугольника AiAi + 1Ai + 2 содержит весь многоугольник.

ВверхВниз   Решение


Автор: Лифшиц Ю.

В клубе встретились двадцать джентльменов. Некоторые из них были в шляпах, а некоторые – без шляп. Время от времени один из джентльменов снимал с себя шляпу и надевал её на одного из тех, у кого в этот момент шляпы не было. В конце десять джентльменов подсчитали, что каждый из них отдавал шляпу большее количество раз, чем получал. Сколько джентльменов пришли в клуб в шляпах?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 316]      



Задача 35498

Темы:   [ Процессы и операции ]
[ Принцип крайнего (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 8,9

Можно ли все натуральные числа разбить на пары так, чтобы сумма чисел в каждой паре была квадратом целого числа?
Прислать комментарий     Решение


Задача 64379

Тема:   [ Процессы и операции ]
Сложность: 3+
Классы: 6,7

Автор: Лифшиц Ю.

В клубе встретились двадцать джентльменов. Некоторые из них были в шляпах, а некоторые – без шляп. Время от времени один из джентльменов снимал с себя шляпу и надевал её на одного из тех, у кого в этот момент шляпы не было. В конце десять джентльменов подсчитали, что каждый из них отдавал шляпу большее количество раз, чем получал. Сколько джентльменов пришли в клуб в шляпах?

Прислать комментарий     Решение

Задача 64430

Темы:   [ Процессы и операции ]
[ Перебор случаев ]
[ Инварианты ]
[ Признаки делимости на 5 и 10 ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 9,10,11

На экране компьютера – число 141. Каждую секунду компьютер перемножает все цифры числа на экране, полученное произведение либо прибавляет к этому числу, либо вычитает из него, а результат появляется на экране вместо исходного числа. Появится ли еще когда-нибудь на экране число 141?

Прислать комментарий     Решение

Задача 64536

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Арифметическая прогрессия ]
Сложность: 3+
Классы: 7,8,9

На доске были записаны числа 3, 9 и 15. Разрешалось сложить два записанных числа, вычесть из этой суммы третье, а результат записать на доску вместо того числа, которое вычиталось. После многократного выполнения такой операции на доске оказались три числа, наименьшее из которых было 2013. Каковы были два остальных числа?

Прислать комментарий     Решение

Задача 64554

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Четность и нечетность ]
Сложность: 3+

На экране компьютера – число 12. Каждую секунду число на экране умножают или делят либо на 2, либо на 3. Результат действия возникает на экране вместо записанного числа. Ровно через минуту на экране появилось число. Могло ли это быть число 54?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 316]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .