ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Фили и Кили играют в шахматы. Кроме шахматной доски у них есть одна ладья, которую они поставили в правый нижний угол, и делают ей ходы по очереди, причем ходить разрешается только вверх или влево (на любое количество клеток). Кто не может сделать хода, тот проиграл. Кили ходит первым. Кто выиграет при правильной игре?

Вниз   Решение


Окружность пересекает оси координат в точках  А(a, 0),  B(b, 0)  C(0, c)  и  D(0, d).  Найдите координаты её центра.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 9]      



Задача 116488

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Аналитический метод в геометрии ]
Сложность: 3-
Классы: 9,10,11

Прямая пересекает график функции  y = x²  в точках с абсциссами x1 и x2, а ось абсцисс – в точке с абсциссой x3. Докажите, что    .

Прислать комментарий     Решение

Задача 64480

Темы:   [ Диаметр, основные свойства ]
[ Аналитический метод в геометрии ]
Сложность: 3
Классы: 9,10,11

Окружность пересекает оси координат в точках  А(a, 0),  B(b, 0)  C(0, c)  и  D(0, d).  Найдите координаты её центра.

Прислать комментарий     Решение

Задача 35407

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Аналитический метод в геометрии ]
Сложность: 4-
Классы: 8,9,10,11

На плоскости расположены две параболы так, что их оси взаимно перпендикулярны, а сами параболы пересекаются в четырёх точках.
Докажите, что эти четыре точки лежат на одной окружности.

Прислать комментарий     Решение

Задача 78040

Темы:   [ Аффинные преобразования и их свойства ]
[ Аналитический метод в геометрии ]
Сложность: 4-
Классы: 11

На плоскости даны две прямые, пересекающиеся под острым углом. В направлении одной из прямых производится сжатие с коэффициентом 1/2. Доказать, что найдется точка, расстояние от которой до точки пересечения прямых увеличится.
Прислать комментарий     Решение


Задача 78278

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Основные свойства центра масс ]
[ Аналитический метод в геометрии ]
Сложность: 4
Классы: 8,9,10

На сторонах AB, BC, CA правильного треугольника ABC найти такие точки X, Y, Z (соответственно), чтобы площадь треугольника, образованного прямыми CX, BZ, AY, была вчетверо меньше площади треугольника ABC и чтобы было выполнено условие: $$\frac{AX}{XB}=\frac{BY}{YC}=\frac{CZ}{ZA}.$$
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .