ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Все жители острова либо рыцари и говорят только правду, либо лжецы и всегда лгут. Путешественник встретил пятерых островитян. На его вопрос: "Сколько среди вас рыцарей?" первый ответил: "Ни одного!", а двое других ответили: "Один". Что ответили остальные? Решение |
Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 353]
Цифры 0, 1, ..., 9 разбиты на несколько непересекающихся групп. Из цифр каждой группы составляются всевозможные числа, для записи каждого из которых все цифры группы используются ровно один раз (учитываются и записи, начинающиеся с нуля). Все полученные числа расположили в порядке возрастания и k-му числу поставили в соответствие k-ю букву алфавита АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ. Оказалось, что каждой букве соответствует число и каждому числу соответствует некоторая буква. Шифрование сообщения осуществляется заменой каждой буквы соответствующим ей числом. Если ненулевое число начинается с нуля, то при шифровании этот нуль не выписывается. Восстановите сообщение 873146507381 и укажите таблицу замены букв числами.
На острове Правландия все жители могут ошибаться, но младшие никогда не противоречат старшим, а когда старшие противоречат младшим, они (старшие) не ошибаются. Между жителями A, Б и В произошёл такой разговор:
В школе колдовства 13 учеников. Перед экзаменом по ясновидению преподаватель посадил их за круглый стол и попросил угадать, кто получит диплом ясновидящего. Про себя и двух своих соседей все скромно умолчали, а про всех остальных написали: "Никто из этих десяти не получит!" Конечно же, все сдавшие экзамен угадали, а все остальные ученики ошиблись. Сколько колдунов получили диплом?
На острове 100 рыцарей и 100 лжецов. У каждого из них есть хотя бы один друг. Однажды ровно 100 человек сказали: "Все мои друзья – рыцари", и ровно 100 человек сказали: "Все мои друзья – лжецы". Каково наименьшее возможное количество пар друзей, один из которых рыцарь, а другой лжец?
Все жители острова либо рыцари и говорят только правду, либо лжецы и всегда лгут. Путешественник встретил пятерых островитян. На его вопрос: "Сколько среди вас рыцарей?" первый ответил: "Ни одного!", а двое других ответили: "Один". Что ответили остальные?
Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 353] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|