ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В ряд выписаны несколько нулей и единиц. Рассмотрим пары цифр в этом ряду (не только соседних), где левая цифра равна 1, а правая 0. Пусть среди этих пар ровно M таких, что между единицей и нулем этой пары стоит чётное число цифр, и ровно N таких, что между единицей и нулем этой пары стоит нечётное число цифр. Докажите, что  M ≥ N.

   Решение

Задачи

Страница: << 107 108 109 110 111 112 113 >> [Всего задач: 1007]      



Задача 64514

Темы:   [ Турниры и турнирные таблицы ]
[ Теория графов (прочее) ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10

Автор: Бона М.

В турнире участвуют 2m команд. В первом туре встретились некоторые m пар команд, во втором – другие m пар.
Докажите, что после этого можно выбрать m команд, никакие две из которых ещё не играли между собой.

Прислать комментарий     Решение

Задача 64517

Темы:   [ Четность и нечетность ]
[ Классическая комбинаторика (прочее) ]
[ Инварианты ]
Сложность: 3+
Классы: 8,9,10

В ряд выписаны несколько нулей и единиц. Рассмотрим пары цифр в этом ряду (не только соседних), где левая цифра равна 1, а правая 0. Пусть среди этих пар ровно M таких, что между единицей и нулем этой пары стоит чётное число цифр, и ровно N таких, что между единицей и нулем этой пары стоит нечётное число цифр. Докажите, что  M ≥ N.

Прислать комментарий     Решение

Задача 64542

Темы:   [ Таблицы и турниры (прочее) ]
[ Комбинаторика (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+

В квадратной таблице размером 100×100 некоторые клетки закрашены. Каждая закрашенная клетка является единственной закрашенной клеткой либо в своем столбце, либо в своей строке. Какое наибольшее количество клеток может быть закрашено?

Прислать комментарий     Решение

Задача 64556

Темы:   [ Системы точек и отрезков (прочее) ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3+

На окружности отмечено 20 точек. Сколько существует таких троек хорд с концами в этих точках, что каждая хорда пересекает две остальные (возможно, в концах)?

Прислать комментарий     Решение

Задача 64595

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3+
Классы: 8,9

На плоскости нарисовали 10 равных отрезков и отметили все их точки пересечения. Оказалось, что каждая точка пересечения делит любой проходящий через неё отрезок в отношении  3 : 4.  Каково наибольшее возможное число отмеченных точек?

Прислать комментарий     Решение

Страница: << 107 108 109 110 111 112 113 >> [Всего задач: 1007]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .