ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан выпуклый пятиугольник. Петя выписал в тетрадь значения синусов всех его углов, а Вася – значения косинусов всех его углов. Оказалось, что среди выписанных Петей чисел нет четырёх различных. Могут ли все числа, выписанные Васей, оказаться различными? РешениеНайдите все значения a, для которых найдутся такие x, y и z, что числа cos x, cos y и cos z попарно различны и образуют в указанном порядке арифметическую прогрессию, при этом числа cos(x + a), cos(y + a) и cos(z + a) также образуют в указанном порядке арифметическую прогрессию. Решение |
Страница: 1 2 >> [Всего задач: 9]
Даны различные натуральные числа a, b. На координатной плоскости нарисованы графики функций y = sin ax, y = sin bx и отмечены все точки их пересечения. Докажите, что существует натуральное число c, отличное от a, b и такое, что график функции y = sin cx проходит через все отмеченные точки.
В выпуклом четырёхугольнике тангенс одного из углов равен числу m. Могут ли тангенсы каждого из трёх остальных углов также равняться m?
Дан выпуклый пятиугольник. Петя выписал в тетрадь значения синусов всех его углов, а Вася – значения косинусов всех его углов. Оказалось, что среди выписанных Петей чисел нет четырёх различных. Могут ли все числа, выписанные Васей, оказаться различными?
Сравните: sin 3 и sin 3°.
Найдите все значения a, для которых найдутся такие x, y и z, что числа cos x, cos y и cos z попарно различны и образуют в указанном порядке арифметическую прогрессию, при этом числа cos(x + a), cos(y + a) и cos(z + a) также образуют в указанном порядке арифметическую прогрессию.
Страница: 1 2 >> [Всего задач: 9] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|