ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Существует ли выпуклый пятиугольник, в котором каждая диагональ равна какой-то стороне?

   Решение

Задачи

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 181]      



Задача 104108

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Вычисление углов ]
[ Применение тригонометрических формул (геометрия) ]
[ Правильные многоугольники ]
Сложность: 5
Классы: 9,10,11

В четырёхугольнике ABCD  AB = BC,  ∠A = ∠B = 20°,  ∠C = 30°.  Продолжение стороны AD пересекает BC в точке M, а продолжение стороны CD пересекает AB в точке N. Найдите угол AMN.

Прислать комментарий     Решение

Задача 73834

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Поворот помогает решить задачу ]
[ Метод спуска ]
[ Правильные многоугольники ]
Сложность: 6-
Классы: 8,9,10

При каких n правильный n-угольник можно разместить на листе бумаги в линейку так, чтобы все вершины лежали на линиях?
(Линии — параллельные прямые, расположенные на одинаковых расстояниях друг от друга.)

Прислать комментарий     Решение

Задача 78713

Темы:   [ Пятиугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Три точки, лежащие на одной прямой ]
[ Центр поворотной гомотетии ]
[ Правильные многоугольники ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 4
Классы: 8,9,10

Имеется два правильных пятиугольника с одной общей вершиной. Вершины каждого пятиугольника нумеруются по часовой стрелке цифрами от 1 до 5, причём в общей вершине ставится цифра 1. Вершины с одинаковыми номерами соединены прямыми. Доказать, что полученные четыре прямые пересекаются в одной точке.

Прислать комментарий     Решение

Задача 73538

Темы:   [ Раскраски ]
[ Целочисленные решетки ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Шестиугольники ]
[ Правильные многоугольники ]
Сложность: 5+
Классы: 9,10,11

   а) На рис. 1 плоскость покрыта квадратами пяти цветов. Центры квадратов одного и того же цвета расположены в вершинах сетки из одинаковых квадратов. При каком числе n цветов возможно аналогичное заполнение плоскости?

   б) На рис. 2 плоскость покрыта шестиугольниками семи цветов так, что центры шестиугольников одного и того же цвета образуют вершины решётки из одинаковых правильных треугольников. При каком числе n цветов возможно аналогичное построение?

   Примечание. Имеются в виду только такие заполнения плоскости фигурками (квадратами или шестиугольниками), при котором сетка, соответствующая какому-то одному цвету, имеет такие же размеры и направления сторон квадратов (или треугольников), как и сетка, соответствующая любому другому цвету (то есть все сетки должны получаться друг из друга параллельным сдвигом).

Прислать комментарий     Решение

Задача 64751

Темы:   [ Пятиугольники ]
[ Примеры и контрпримеры. Конструкции ]
[ Правильный (равносторонний) треугольник ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Правильные многоугольники ]
Сложность: 3+

Существует ли выпуклый пятиугольник, в котором каждая диагональ равна какой-то стороне?

Прислать комментарий     Решение

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 181]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .