ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Вписанный угол
>>
Углы, опирающиеся на равные дуги и равные хорды
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Точки A', B', C' лежат на сторонах BC, CA, AB треугольника ABC. Точка X такова, что ∠AXB = ∠A'C'B' + ∠ACB и ∠BXC = ∠B'A'C' + ∠BAC. |
Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 499]
Дан прямоугольный треугольник ABC. Пусть M – середина гипотенузы AB, O – центр описанной окружности ω треугольника CMB. Прямая AC вторично пересекает окружность ω в точке K. Прямая KO пересекает описанную окружность треугольника ABC в точке L. Докажите, что прямые AL и KM пересекаются на описанной окружности треугольника ACM.
Дан остроугольный треугольник ABC. Окружности с центрами A и C проходят через точку B, вторично пересекаются в точке F и пересекают описанную окружность ω треугольника ABC в точках D и E. Отрезок BF пересекает окружность ω в точке O. Докажите, что O – центр описанной окружности треугольника DEF.
Точки A', B', C' лежат на сторонах BC, CA, AB треугольника ABC. Точка X такова, что ∠AXB = ∠A'C'B' + ∠ACB и ∠BXC = ∠B'A'C' + ∠BAC.
Внутри параллелограмма ABCD выбрана точка Р так, что ∠АРВ + ∠СРD = 180°. Докажите, что ∠РВC = ∠РDC.
Пусть M – середина основания AC равнобедренного треугольника ABC. На сторонах AB и BC отмечены соответственно точки E и F так, что AE ≠ CF и
Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 499] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|