ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Нилов Ф.

Точки A', B', C' лежат на сторонах BC, CA, AB треугольника ABC. Точка X такова, что  ∠AXB = ∠A'C'B' + ∠ACB  и  ∠BXC = ∠B'A'C' + ∠BAC.
Докажите, что четырёхугольник XA'BC' – вписанный.

   Решение

Задачи

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 499]      



Задача 64918

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 3+
Классы: 9,10,11

Автор: Ивлев Ф.

Дан прямоугольный треугольник ABC. Пусть M – середина гипотенузы AB, O – центр описанной окружности ω треугольника CMB. Прямая AC вторично пересекает окружность ω в точке K. Прямая KO пересекает описанную окружность треугольника ABC в точке L. Докажите, что прямые AL и KM пересекаются на описанной окружности треугольника ACM.

Прислать комментарий     Решение

Задача 64964

Темы:   [ Вписанные и описанные окружности ]
[ Вписанный угол равен половине центрального ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 9,10,11

Дан остроугольный треугольник ABC. Окружности с центрами A и C проходят через точку B, вторично пересекаются в точке F и пересекают описанную окружность ω треугольника ABC в точках D и E. Отрезок BF пересекает окружность ω в точке O. Докажите, что O – центр описанной окружности треугольника DEF.

Прислать комментарий     Решение

Задача 65004

Темы:   [ Вписанные и описанные окружности ]
[ Три окружности пересекаются в одной точке ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Автор: Нилов Ф.

Точки A', B', C' лежат на сторонах BC, CA, AB треугольника ABC. Точка X такова, что  ∠AXB = ∠A'C'B' + ∠ACB  и  ∠BXC = ∠B'A'C' + ∠BAC.
Докажите, что четырёхугольник XA'BC' – вписанный.

Прислать комментарий     Решение

Задача 65426

Темы:   [ Признаки и свойства параллелограмма ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 9,10,11

Внутри параллелограмма ABCD выбрана точка Р так, что  ∠АРВ + ∠СРD = 180°.  Докажите, что  ∠РВC = ∠РDC.

Прислать комментарий     Решение

Задача 65734

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10,11

Пусть M – середина основания AC равнобедренного треугольника ABC. На сторонах AB и BC отмечены соответственно точки E и F так, что  AE ≠ CF  и
FMC = ∠MEF = α.  Найдите  ∠AEM.

Прислать комментарий     Решение

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .