ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В выпуклом четырёхугольнике ABCD выполнены соотношения AB = BD, ∠ABD = ∠DBC. На диагонали BD нашлась такая точка K, что BK = BC. |
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 207]
В треугольнике ABC сторона AB больше стороны BC. Пусть A1 и B1 – середины сторон BC и AC, а B2 и C2 – точки касания вписанной окружности со сторонами AC и AB. Докажите, что отрезки A1B1 и B2C2 пересекаются в точке X, лежащей на биссектрисе угла B.
Докажите, что если выпуклый четырёхугольник ABCD можно разрезать на два подобных четырёхугольника, то ABCD – трапеция или параллелограмм.
Диагонали вписанного четырёхугольника ABCD пересекаются в точке P. Пусть K, L, M, N – середины соответственно сторон AB, BC, CD, AD.
В выпуклом четырёхугольнике ABCD выполнены соотношения AB = BD, ∠ABD = ∠DBC. На диагонали BD нашлась такая точка K, что BK = BC.
Точка O лежит на диагонали AC выпуклого четырёхугольника ABCD. Известно, что OC = OD и что точка O одинаково удалена от прямых DA, AB и BC. Найдите углы четырёхугольника, если ∠AOB = 110° и ∠COD = 90°.
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 207]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке