ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть точка z движется по единичной окружности против часовой стрелки. Опишите движение следующих точек
На сторонах выпуклого четырёхугольника ABCD, площадь
которого равна 1, взяты точки: K — на AB, L — на BC,
M — на CD, N — на AD. При этом
Дан многоугольник, у которого каждые две соседние стороны перпендикулярны. Назовём две его вершины не дружными, если биссектрисы многоугольника, выходящие из этих вершин, перпендикулярны. Докажите, что для любой вершины количество не дружных с ней вершин чётно. Муха двигается из начала координат только вправо или вверх по линиям
целочисленной сетки (монотонное блуждание). В каждом узле сетки муха случайным образом выбирает направление дальнейшего движения: вверх или вправо. |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 75]
Кощей придумал для Ивана-дурака испытание. Он дал Ивану волшебную дудочку, на которой можно играть только две ноты – до и си. Для прохождения испытания Ивану нужно сыграть какую-нибудь мелодию из 300 нот на свой выбор. Но до того, как он начнёт играть, Кощей выбирает и объявляет запретными одну мелодию из пяти нот, одну – из шести нот, ..., одну – из 30 нот. Если в какой-то момент последние сыгранные ноты образуют одну из запретных мелодий, дудочка перестаёт звучать. Сможет ли Иван пройти испытание, какие бы мелодии Кощей ни объявил запретными?
Пусть M={x1, .., x30} – множество, состоящее из 30 различных положительных
чисел; An ( 1
Муха двигается из начала координат только вправо или вверх по линиям
целочисленной сетки (монотонное блуждание). В каждом узле сетки муха случайным образом выбирает направление дальнейшего движения: вверх или вправо.
На шкуре у Носорога складки – вертикальные и горизонтальные.
Если у Носорога на левом боку a вертикальных, b горизонтальных складок, а на правом – c вертикальных и d горизонтальных, будем говорить, что это Носорог в состоянии (abcd)
или просто Носорог (abcd).
За дядькой Черномором выстроились чередой бесконечное число богатырей разного роста. Докажите, что он может приказать части из них выйти из строя так, чтобы в строю осталось бесконечное число богатырей и все они стояли по росту (в порядке возрастания или убывания).
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 75]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке