Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

В треугольнике основание равно 12; один из углов при нём равен 120o; сторона против этого угла равна 28. Найдите третью сторону.

Вниз   Решение



Боковые ребра пирамиды равны между собой. Докажите, что высота пирамиды проходит через центр окружности, описанной около основания.

ВверхВниз   Решение


Угол при вершине D трапеции ABCD с основаниями AD и BC равен 60o. Найдите диагонали трапеции, если AD = 10, BC = 3 и CD = 4.

ВверхВниз   Решение



Высота прямоугольного треугольника ABC, опущенная на гипотенузу, равна 9.6. Из вершины C прямого угла восставлен к плоскости треугольника ABC перпендикуляр CM, причем CM = 28. Найдите расстояние от точки M до гипотенузы AB.

ВверхВниз   Решение


Докажите, что для остроугольного треугольника

$\displaystyle {\frac{1}{l_a}}$ + $\displaystyle {\frac{1}{l_b}}$ + $\displaystyle {\frac{1}{l_c}}$ $\displaystyle \leq$ $\displaystyle \sqrt{2}$$\displaystyle \left(\vphantom{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\right.$$\displaystyle {\frac{1}{a}}$ + $\displaystyle {\frac{1}{b}}$ + $\displaystyle {\frac{1}{c}}$$\displaystyle \left.\vphantom{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\right)$.


ВверхВниз   Решение


Стороны треугольника равны a, b, c. Известно, что a3=b3+c3. Докажите, что этот треугольник остроугольный.

ВверхВниз   Решение


Внутри треугольника ABC взята такая точка D, что  BD = CD,  ∠BDC = 120°.  Вне треугольника ABC взята такая точка E, что  AE = CE,  ∠AEC = 60°  и точки B и E находятся в разных полуплоскостях относительно AC. Докажите, что  ∠AFD = 90°,  где F – середина отрезка BE.

ВверхВниз   Решение


Назовём треугольник рациональным, если все его углы измеряются рациональным числом градусов. Назовём точку внутри треугольника рациональной, если при соединении её отрезками с вершинами мы получим три рациональных треугольника. Докажите, что внутри любого остроугольного рационального треугольника найдутся как минимум три различные рациональные точки.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 15]      



Задача 56826

Тема:   [ Треугольники (прочее) ]
Сложность: 2-
Классы: 7,8

а) Докажите, что если в треугольнике медиана совпадает с высотой, то этот треугольник равнобедренный.

б) Докажите, что если в треугольнике биссектриса совпадает с высотой, то этот треугольник равнобедренный.
Прислать комментарий     Решение


Задача 56827

Тема:   [ Треугольники (прочее) ]
Сложность: 2-
Классы: 7,8

Докажите, что биссектрисы треугольника пересекаются в одной точке.
Прислать комментарий     Решение


Задача 116152

Темы:   [ Треугольники (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8

В треугольниках АВС и A1B1C1:  ∠А = ∠А1,  равны высоты, проведённые из вершин В и В1, а также равны медианы, проведённые из вершин С и С1. Обязательно ли эти треугольники равны?

Прислать комментарий     Решение

Задача 58162

Темы:   [ Треугольники (прочее) ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8

На плоскости лежат три шайбы A, B и C. Хоккеист бьёт по одной из шайб так, чтобы она прошла между двумя другими и остановилась в некоторой точке. Могут ли все шайбы вернуться на свои места после25 ударов?

Прислать комментарий     Решение

Задача 65555

Темы:   [ Треугольники (прочее) ]
[ Рациональные и иррациональные числа ]
[ Замечательные точки и линии в треугольнике (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10,11

Назовём треугольник рациональным, если все его углы измеряются рациональным числом градусов. Назовём точку внутри треугольника рациональной, если при соединении её отрезками с вершинами мы получим три рациональных треугольника. Докажите, что внутри любого остроугольного рационального треугольника найдутся как минимум три различные рациональные точки.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .