ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На кружок пришли дети из двух классов: Ваня, Дима, Егор, Инна, Леша, Саша и Таня. На вопрос: "Сколько здесь твоих одноклассников?" каждый честно ответил "Двое" или "Трое". Но мальчики думали, что спрашивают только про мальчиков-одноклассников, а девочки правильно понимали, что спрашивают про всех. Кто Саша – мальчик или девочка?

   Решение

Задачи

Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 1308]      



Задача 65628

Тема:   [ Математическая логика (прочее) ]
Сложность: 3+
Классы: 5,6,7

На кружок пришли дети из двух классов: Ваня, Дима, Егор, Инна, Леша, Саша и Таня. На вопрос: "Сколько здесь твоих одноклассников?" каждый честно ответил "Двое" или "Трое". Но мальчики думали, что спрашивают только про мальчиков-одноклассников, а девочки правильно понимали, что спрашивают про всех. Кто Саша – мальчик или девочка?

Прислать комментарий     Решение

Задача 65637

Темы:   [ Ребусы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 6,7,8

Автор: Акопян Э.

Мальвина записала равенство  МА·ТЕ·МА·ТИ·КА = 2016000  и предложила Буратино заменить одинаковые буквы одинаковыми цифрами, разные буквы – разными цифрами, чтобы равенство стало верным. Есть ли у Буратино шанс выполнить задание?

Прислать комментарий     Решение

Задача 65638

Темы:   [ Теория игр (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 6,7,8

Буратино выложил на стол 2016 спичек и предложил Арлекину и Пьеро сыграть в игру, беря по очереди спички со стола: Арлекин может своим ходом брать либо 5 спичек, либо 26, а Пьеро – либо 9, либо 23. Не дождавшись начала игры, Буратино ушел, а когда он вернулся, партия уже закончилась. На столе осталось две спички, а проиграл тот, кто не смог сделать очередной ход. Хорошенько подумав, Буратино понял, кто ходил первым, и кто выиграл. Выясните это и вы!

Прислать комментарий     Решение

Задача 65666

Тема:   [ Математическая логика (прочее) ]
Сложность: 3+
Классы: 7,8,9

За круглым столом сидят 10 человек, каждый из которых либо рыцарь, который всегда говорит правду, либо лжец, который всегда лжёт. Двое из них заявили: "Оба моих соседа – лжецы", а остальные восемь заявили: "Оба моих соседа – рыцари". Сколько рыцарей могло быть среди этих 10 человек?

Прислать комментарий     Решение

Задача 65697

Темы:   [ Теория множеств (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

В классе учится 23 человека. В течение года каждый ученик этого класса один раз праздновал день рождения, на который пришли некоторые (хотя бы один, но не все) его одноклассники. Могло ли оказаться, что каждые два ученика этого класса встретились на таких празднованиях одинаковое число раз? (Считается, что на каждом празднике встретились каждые два гостя, а также именинник встретился со всеми гостями.)

Прислать комментарий     Решение

Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 1308]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .