ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Шахматная фигура может сдвигаться на 8 или 9 клеток по горизонтали или вертикали. Запрещается ходить на одну и ту же клетку дважды.
Какое наибольшее количество клеток может обойти эта фигура на доске 15×15? (Начать обход разрешается с любой клетки.)

   Решение

Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 136]      



Задача 103787

Темы:   [ Принцип Дирихле (прочее) ]
[ Сочетания и размещения ]
[ Подсчет двумя способами ]
[ Принцип крайнего (прочее) ]
[ Оценка + пример ]
Сложность: 3+
Классы: 7,8,9

В одной из школ 20 раз проводился кружок по астрономии. На каждом занятии присутствовало ровно пять школьников, причём никакие два школьника не встречались на кружке более одного раза. Докажите, что всего на кружке побывало не менее 20 школьников.

Прислать комментарий     Решение


Задача 65816

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
[ Теория алгоритмов (прочее) ]
[ Связность и разложение на связные компоненты ]
[ Оценка + пример ]
Сложность: 4-
Классы: 7,8,9

Шахматная фигура может сдвигаться на 8 или 9 клеток по горизонтали или вертикали. Запрещается ходить на одну и ту же клетку дважды.
Какое наибольшее количество клеток может обойти эта фигура на доске 15×15? (Начать обход разрешается с любой клетки.)

Прислать комментарий     Решение

Задача 109591

Темы:   [ Математическая логика (прочее) ]
[ Таблицы и турниры (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Принцип Дирихле (прочее) ]
[ Оценка + пример ]
Сложность: 4-
Классы: 7,8,9

На совместной конференции партий лжецов и правдолюбов в президиум было избрано 32 человека, которых рассадили в четыре ряда по 8 человек. В перерыве каждый член президиума заявил, что среди его соседей есть представители обеих партий. Известно, что лжецы всегда лгут, а правдолюбы всегда говорят правду. При каком наименьшем числе лжецов в президиуме возможна описанная ситуация? (Два члена президиума являются соседями, если один из них сидит слева, справа, спереди или сзади от другого.)

Прислать комментарий     Решение

Задача 32896

Темы:   [ Принцип Дирихле (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
[ Кооперативные алгоритмы ]
[ Оценка + пример ]
Сложность: 4
Классы: 7,8,9,10

Автор: Нетай И.В.

Сто мудрецов хотят проехать на электричке из 12 вагонов от первой до 76-й станции. Они знают, что на первой станции в два вагона электрички сядут два контролёра. После четвёртой станции на каждом перегоне один из контролёров будет переходить в соседний вагон, причём они "ходят" по очереди. Мудрец видит контролёра, только если он в соседнем вагоне или через вагон. На каждой станции каждый мудрец может перебежать по платформе не далее чем на три вагона (например, из 7-го вагона мудрец может добежать до любого вагона с номером от 4 до 10 и сесть в него). Какое максимальное число мудрецов сможет ни разу не оказаться в одном вагоне с контролёром, как бы контролёры ни перемещались? (Никакой информации о контролёрах, кроме указанной в задаче, мудрец не получает. Мудрецы договариваются о стратегии заранее.)

Прислать комментарий     Решение

Задача 66856

Темы:   [ Теория игр (прочее) ]
[ Вспомогательная раскраска (прочее) ]
[ Теория графов (прочее) ]
[ Числовые таблицы и их свойства ]
[ Оценка + пример ]
Сложность: 4
Классы: 8,9,10,11

У Пети есть колода из 36 карт (4 масти по 9 карт в каждой). Он выбирает из неё половину карт (какие хочет) и отдаёт Васе, а вторую половину оставляет себе. Далее каждым ходом игроки по очереди выкладывают на стол по одной карте (по своему выбору, в открытом виде); начинает Петя. Если в ответ на ход Пети Вася смог выложить карту той же масти или того же достоинства, Вася зарабатывает
1 очко. Какое наибольшее количество очков он может гарантированно заработать?

Прислать комментарий     Решение

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 136]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .