ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Пусть

uk = $\displaystyle {\dfrac{\sin2nx\cdot\sin(2n-1)\cdot
x\ldots\cdot\sin(2n-k+1)x}{\sin
kx\cdot\sin(k-1)x\cdot\ldots\cdot\sin x}}$.

Докажите, что числа uk можно представить в виде многочлена от cos x.

Вниз   Решение


На плоскости лежал куб. Его перекатили несколько раз (через рёбра) так, что куб снова оказался на исходном месте той же гранью вверх.
Могла ли при этом верхняя грань повернуться на 90° относительно своего начального положения?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 94]      



Задача 35046

Тема:   [ Шахматная раскраска ]
Сложность: 3+
Классы: 8,9,10

Замок имеет вид прямоугольника размером 7×9 клеток. Каждая клетка, кроме центральной – комната замка, а в центральной клетке находится бассейн. В каждой стене (стороне клетки), разделяющей две соседние комнаты, проделана дверь. Можно ли, не выходя из замка и не заходя в бассейн, обойти все комнаты, побывав в каждой ровно по одному разу?

Прислать комментарий     Решение

Задача 65814

Темы:   [ Шахматная раскраска ]
[ Средние величины ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

В каждой вершине куба записано по числу. Вместо каждого числа записывают среднее арифметическое чисел, стоящих в трёх соседних вершинах (числа заменяют одновременно). После десяти таких операций в каждой вершине оказалось исходное число. Обязательно ли все исходные числа были одинаковы?

Прислать комментарий     Решение

Задача 65822

Темы:   [ Шахматная раскраска ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 9,10,11

На плоскости лежал куб. Его перекатили несколько раз (через рёбра) так, что куб снова оказался на исходном месте той же гранью вверх.
Могла ли при этом верхняя грань повернуться на 90° относительно своего начального положения?

Прислать комментарий     Решение

Задача 98064

Темы:   [ Шахматная раскраска ]
[ Замощения костями домино и плитками ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 6,7,8

Автор: Фомин С.В.

Доска 100×100 разбита на 10000 единичных квадратиков. Один из них вырезали, так что образовалась дырка. Можно ли оставшуюся часть доски покрыть равнобедренными прямоугольными треугольниками с гипотенузой длины 2 так, чтобы их гипотенузы шли по сторонам квадратиков, а катеты – по диагоналям и чтобы треугольники не налегали друг на друга и не свисали с доски?

Прислать комментарий     Решение

Задача 116065

Темы:   [ Шахматная раскраска ]
[ Боковая поверхность параллелепипеда ]
Сложность: 3+
Классы: 6,7

Деревянный брусок тремя распилами распилили на восемь меньших брусков. На рисунке у семи брусков указана их площадь поверхности.
Какова площадь поверхности невидимого бруска?




Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 94]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .