ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Десяти ребятам положили в тарелки по 100 макаронин. Есть ребята не хотели и стали играть. Одним действием кто-то из детей перекладывает из своей тарелки по одной макаронине всем другим детям. После какого наименьшего количества действий у всех в тарелках может оказаться разное количество макаронин?

   Решение

Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 1221]      



Задача 65870

Темы:   [ Процессы и операции ]
[ Принцип Дирихле (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Десяти ребятам положили в тарелки по 100 макаронин. Есть ребята не хотели и стали играть. Одним действием кто-то из детей перекладывает из своей тарелки по одной макаронине всем другим детям. После какого наименьшего количества действий у всех в тарелках может оказаться разное количество макаронин?

Прислать комментарий     Решение

Задача 65877

Темы:   [ Процессы и операции ]
[ Принцип Дирихле (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

100 ребятам положили в тарелки по 100 макаронин. Есть ребята не хотели и стали играть. Одним действием кто-то из детей перекладывает из своей тарелки по одной макаронине некоторым (кому хочет) из остальных. После какого наименьшего количества действий у всех в тарелках может оказаться разное количество макаронин?

Прислать комментарий     Решение

Задача 66131

Темы:   [ Процессы и операции ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 6,7,8

Зубной врач запретил Соне съедать больше десяти карамелек в день, причём, если в какой-то день она съедает больше семи карамелек, то в следующие два дня ей нельзя съедать более пяти карамелек за день. Какое наибольшее количество карамелек Соня сможет съесть за 25 дней, следуя указаниям зубного врача?

Прислать комментарий     Решение

Задача 66171

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Геометрические интерпретации в алгебре ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3+
Классы: 8,9

На доске написаны в порядке возрастания два натуральных числа x и y  (x ≤ y).  Петя записывает на бумажке x² (квадрат первого числа), а затем заменяет числа на доске числами x и  y – x,  записывая их в порядке возрастания. С новыми числами на доске он проделывает ту же операцию, и так далее, до тех пор пока одно из чисел на доске не станет нулём. Чему будет в этот момент равна сумма чисел на Петиной бумажке?

Прислать комментарий     Решение

Задача 66176

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Геометрические интерпретации в алгебре ]
[ Объем помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10

На доске написаны три натуральных числа. Петя записывает на бумажке произведение каких-нибудь двух из этих чисел, а на доске уменьшает третье число на 1. С новыми тремя числами на доске он снова проделывает ту же операцию, и так далее, до тех пор пока одно из чисел на доске не станет нулём. Чему будет в этот момент равна сумма чисел на Петиной бумажке?

Прислать комментарий     Решение

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .