ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Паша выбрал 2017 (не обязательно различных) натуральных чисел a1, a2, ..., a2017 и играет сам с собой в следующую игру. Изначально у него есть неограниченный запас камней и 2017 больших пустых коробок. За один ход Паша добавляет в любую коробку (по своему выбору) a1 камней, в любую из оставшихся коробок (по своему выбору) – a2 камней, ..., наконец, в оставшуюся коробку – a2017 камней. Пашина цель – добиться того, чтобы после некоторого хода во всех коробках стало поровну камней. Мог ли он выбрать числа так, чтобы цели можно было добиться за 43 хода, но нельзя – за меньшее ненулевое число ходов?

   Решение

Задачи

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 737]      



Задача 65977

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 4-
Классы: 6,7

  Кощей Бессмертный взял в плен 43 человека и увёз их на остров. Отправился Иван-Царевич на двухместной лодке выручать их. А Кощей ему и говорит:
  – Надоело мне этих дармоедов кормить, пусть плывут отсюда на твоей лодке подобру-поздорову. Имей в виду: с острова на берег доплыть можно только вдвоём, а обратно и один справится. Перед переправой я скажу каждому не менее чем про 40 других пленников, что это оборотни. Кому про кого скажу, сам выберешь. Если пленник про кого-то слышал, что тот оборотень, он с ним в лодку не сядет, а на берегу находиться сможет. Я заколдую их так, чтобы на суше они молчали, зато в лодке рассказывали друг другу про всех известных им оборотней. Пока хоть один пленник остаётся на острове, тебе с ними плавать нельзя. Лишь когда все 43 окажутся на том берегу, одному из них можно будет за тобой приплыть. А коли не сумеешь устроить им переправу – останешься у меня навсегда.
  Есть ли у Ивана способ пройти испытание и вернуться с пленниками домой?

Прислать комментарий     Решение

Задача 66020

Темы:   [ Теория алгоритмов (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10,11

Паша выбрал 2017 (не обязательно различных) натуральных чисел a1, a2, ..., a2017 и играет сам с собой в следующую игру. Изначально у него есть неограниченный запас камней и 2017 больших пустых коробок. За один ход Паша добавляет в любую коробку (по своему выбору) a1 камней, в любую из оставшихся коробок (по своему выбору) – a2 камней, ..., наконец, в оставшуюся коробку – a2017 камней. Пашина цель – добиться того, чтобы после некоторого хода во всех коробках стало поровну камней. Мог ли он выбрать числа так, чтобы цели можно было добиться за 43 хода, но нельзя – за меньшее ненулевое число ходов?

Прислать комментарий     Решение

Задача 66064

Тема:   [ Теория игр (прочее) ]
Сложность: 4-
Классы: 6,7

Два пирата, Билл и Джон, имея каждый по 74 золотые монеты, решили сыграть в такую игру: они по очереди будут выкладывать на стол монеты, за один ход – одну, две или три, а выиграет тот, кто положит на стол сотую по счёту монету. Начинает Билл. Кто может выиграть в такой игре, независимо от того, как будет действовать соперник?

Прислать комментарий     Решение

Задача 66113

Темы:   [ Взвешивания ]
[ Разбиения на пары и группы; биекции ]
[ Оценка + пример ]
Сложность: 4-
Классы: 7,8,9,10

Вес каждой гирьки набора – нецелое число грамм. Ими можно уравновесить любой целый вес от 1 г до 40 г (гири кладутся на одну чашку весов, измеряемый вес – на другую). Каково наименьшее число гирь в таком наборе?

Прислать комментарий     Решение

Задача 66196

Темы:   [ Теория алгоритмов (прочее) ]
[ Полуинварианты ]
[ Обратный ход ]
Сложность: 4-
Классы: 8,9,10,11

Капитан Врунгель в своей каюте разложил перетасованную колоду из 52 карт по кругу, оставив одно место свободным. Матрос Фукс с палубы, не отходя от штурвала и не зная начальной раскладки, называет карту. Если эта карта лежит рядом со свободным местом, Врунгель её туда передвигает, не сообщая Фуксу. Иначе ничего не происходит. Потом Фукс называет еще одну карту, и так сколько угодно раз, пока он не скажет “стоп”. Может ли Фукс добиться того, чтобы после слова "стоп"
  а) каждая карта наверняка оказалась не там, где была вначале?
  б) рядом со свободным местом наверняка не было туза пик?
Прислать комментарий     Решение


Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 737]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .