ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Дан куб АBCDA'B'C'D' c ребром 1. На его рёбрах АВ, ВС, C'D' и D'A' отмечены точки K, L, M и N соответственно так, что KLMN – квадрат.
Найдите его площадь.

Вниз   Решение


На гранях единичного куба отметили восемь точек, которые служат вершинами меньшего куба.
Найдите все значения, которые может принимать длина ребра этого куба.

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 204]      



Задача 65724

Темы:   [ Куб ]
[ Свойства сечений ]
[ Сферы (прочее) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

На каждом из 12 рёбер куба отметили его середину. Обязательно ли сфера проходит через все отмеченные точки, если известно, что она проходит
  а) через какие-то 6 из отмеченных точек;
  б) через какие-то 7 из отмеченных точек?

Прислать комментарий     Решение

Задача 66004

Темы:   [ Куб ]
[ Площадь сечения ]
[ Проектирование помогает решить задачу ]
[ Теорема о трех перпендикулярах ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4-
Классы: 10,11

Дан куб АBCDA'B'C'D' c ребром 1. На его рёбрах АВ, ВС, C'D' и D'A' отмечены точки K, L, M и N соответственно так, что KLMN – квадрат.
Найдите его площадь.

Прислать комментарий     Решение

Задача 66093

Темы:   [ Куб ]
[ Теорема Пифагора (прямая и обратная) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 4-
Классы: 10,11

На гранях единичного куба отметили восемь точек, которые служат вершинами меньшего куба.
Найдите все значения, которые может принимать длина ребра этого куба.

Прислать комментарий     Решение

Задача 98598

Темы:   [ Куб ]
[ Свойства сечений ]
[ Параллельность прямых и плоскостей ]
[ Неравенство треугольника (прочее) ]
Сложность: 4-
Классы: 10,11

Некоторый куб рассекли плоскостью так, что в сечении получился пятиугольник.
Докажите, что длина одной из сторон этого пятиугольника отличается от 1 метра по крайней мере на 20 сантиметров.

Прислать комментарий     Решение

Задача 116727

Темы:   [ Куб ]
[ Ломаные внутри квадрата ]
[ Неравенство Коши ]
[ Симметриия и неравенства и экстремумы ]
Сложность: 4-
Классы: 10,11

Внутри каждой грани единичного куба выбрали по точке. Затем каждые две точки, лежащие на соседних гранях, соединили отрезком.
Докажите, что сумма длин этих отрезков не меньше, чем    .

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 204]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .